ROOT

An Object-Oriented
Data Analysis Framework

Users Guide 3.1d

December, 2001

Comments to: rootdoc@root.cern.ch

The ROOT User's Guide:

Authors: René Brun/CERN, Fons Rademakers, Suzanne Panacek/FNAL,
Damir Buskulic/Universite de Savoie/LAPP, Jorn Adamczewski/GSI, Marc
Hemberger/GSI, Nick West/Oxford

Editor: Suzanne Panacek/FNAL
Special Thanks to: Philippe Canal/FNAL, Andrey Kubarovsky/FNAL

Version 3.01

Up to version 3.1a, the User's Guide version numbers were independent of
the software version numbers. With the release of ROOT 3.01 we adopted
the convention to match the software version number. Hence the User's
Guide version 3.01x documents ROOT version 3. All Users Guide versions
0.x document ROOT two.

Preface

In late 1994, we decided to learn and investigate Object Oriented
programming and C++ to better judge the suitability of these relatively new
techniques for scientific programming. We knew that there is no better way to
learn a new programming environment than to use it to write a program that
can solve a real problem. After a few weeks, we had our first histogramming
package in C++. A few weeks later we had a rewrite of the same package
using the, at that time, very new template features of C++. Again, a few
weeks later we had another rewrite of the package without templates since
we could only compile the version with templates on one single platform
using a specific compiler. Finally, after about four months we had a
histogramming package that was faster and more efficient than the well-
known FORTRAN based HBOOK a histogramming package. This gave us
enough confidence in the new technologies to decide to continue the
development. Thus was born ROOT.

Since its first public release at the end of 1995, ROOT has enjoyed an ever-
increasing popularity. Currently it is being used in all major High Energy and
Nuclear Physics laboratories around the world to monitor, to store and to
analyze data. In the other sciences as well as the medical and financial
industries, many people are using ROOT. We estimate the current user base
to be around several thousand people.

In 1997, Eric Raymond analyzed in his paper "The Cathedral and the Bazaar"
the development method that makes Linux such a success. The essence of
that method is: "release early, release often and listen to your customers".
This is precisely how ROOT is being developed. Over the last five years,
many of our "customers" became co-developers. Here we would like to thank
our main co-developers and contributors:

Masaharu Goto who wrote the CINT C++ interpreter. CINT has become an
essential part of ROOT. Despite being 8 time zones ahead of us, we often
have the feeling he is sitting in the room next door.

Valery Fine who ported ROOT to Windows and who also contributed largely
to the 3-D graphics and geometry packages.

Nenad Buncic who developed the HTML documentation generation system
and integrated the X3D viewer in ROOT.

Philippe Canal who developed the automatic compiler interface to CINT. In
addition to a large number of contributions to many different parts of the
system, Philippe is also the ROOT support coordinator at FNAL.

Suzanne Panacek who is the main author of this manual. Suzanne is also
very active in preparing tutorials and giving lectures about ROOT.

Further, we would like to thank the following people for their many
contributions, bug fixes, bug reports and comments:

Preface

December 2001 - version 3.1d i

Maarten Ballintijn, Stephen Bailey, Damir Buskulic, Federico Carminati, Mat
Dobbs, Rutger v.d. Eijk, Anton Fokin, Nick van Eijndhoven, George
Heintzelman, Marc Hemberger, Christian Holm Cristensen, Jacek M.
Holeczek, Stephan Kluth, Marcel Kunze, Christian Lacunza, Matthew D.
Langston, Michal Lijowski, Peter Malzacher, Dave Morrison, Eddy
Offermann, Pasha Murat, Valeriy Onuchin, Victor Perevoztchikov, Sven
Ravndal, Reiner Rohlfs, Gunther Roland, Andy Salnikov, Otto Schaile,
Alexandre V. Vaniachine, Torre Wenaus and Hans Wenzel, and many more
who have also contributed

You all helped in making ROOT a great experience.
Happy ROOTing!

Rene Brun & Fons Rademakers
Geneva, August 2000.

December 2001 - version 3.1d Preface

Table of Contents

Preface i
Table of Contents iii
1 Introduction 1
The ROOT Mailing List......ccceioiiiiiniiiiiiiiiieneeeeeeee e 1
Contact INfOrmMationcccvvierieeiieeiie et ereesre e e aeeseaeas 2
Conventions Used in This BOOKcccccveiiiiriiiiiiieecie e 2
The FramewWOrK........cccveeiiiiiiieeiie ittt et e e e eaee st eeaeesnbeeenaeesnne 3
What is a Framework?ccoocvvieiieiieiie e 3

Why Object-Oriented?.........cceeverieriieieeiesieeeere e 4
Installing ROOTcciiieiieieeeee ettt 4
The Organization of the ROOT Frameworkc.cceceverieienicnienincncnenne. 6
SROOTSY S/DIN ..ttt 7
SROOTSY S/ID ..ttt 7
SROOTSY SAULOTIALS ...t 9
SROOTSY SACSE vttt 9
SROOTSYS/INCIUAE ...t 10
SROOTSY S/<HDIary>......ooveieeiieieeiieiieieiee et 10

How to Find More Information...........c.ceceeervierieeniienieesie e eieeeiee e 11
2 Getting Started 13
Start and Quit @ ROOT SeSSI0Nccovviiiuiiiiiieeiiieiieeree e 13
EXit ROOT ...ttt 15

First Example: Using the GUIcccooovviiiiiiiiiieeie e 15
Second Example: Building a Multi-pad Canvascccceeevveeveeecieenneennne. 19
Printing the Canvas.........ccocoeveeiirienienieneeee e 19

The ROOT Command Line..........cccveeeveeioiienciieiiieeiiecieeeieesieeeveesvee e 20
CINT EXtENSIONS ..vveevrieiiieriieeiieerieeesieeesieeeieeesaeeesaeesseesseessseesnns 20

Helpful Hints for Command Line Typingccccceevvevverveneennnne 20
Multi-line CommAaNdS..........cccvevvrevereienieniierreeieeee e seeseeeseeeeees 21
CONVENTIONS ...o.vvieieiieiieiienteesteeteeeteetesseesseeseenseesesssesssesssesneesseesseenseensenns 21
Coding CONVENLIONSveeuveeererrierieeeeeieeeeereeeeeseeenseesseeseensesnnenes 21
Machine Independent TYPES........cceeverieriieiieriieiiesie e 22

TODJECE ..t eiieecie ettt ettt et e e e sbeessaeesabaennneens 22

G1oDbal Variablescecvieiiieiiieiieeie ettt e eeeaee st eeaee e 23
SROOT .ttt 23

BFILC e 23
EDATECTOTY «.eeeeeie ettt st st s 23

BPAA . e 24
ERANAOM.....eiiiiiieiee e 24

EENV e 24

HIStOTY FIle .ot 24
ENvIronment SETUD.......ceerveerieriieiieriereeie et eitesie e eee e seeseeesseenaesnnees 25

Table of Contents

December 2001 - version 3.1d iii

The Script Pathccoocviiiiieiiieeeceeeee e 25

Logon and Logoff SCripts ...c..eeoueiierierieiieieeieseseceeee e 25
Tracking Memory Leakscooceiuiiiiiieniiiiieceseeeeee e 26
Converting HBOOK/PAW fIles........cccveiiriinieiieieeieee e 26
3 Histograms 29
The Histogram Classes.......cccuerueiierierieniieieeiie sttt 29
Creating HiStOZIamSc.coiiiriiriiiiieieeiesieei et e 30
Fixed or Variable Bin SiZe.........coocieiiiiiiniinieieeeeeeneee e 31
Bin numbering convention.........cc..ceeeeveeeuerienienienieneeneeneeeene 31
RE-DINNINGoeeiiiiiiieii ettt s 32

Filling HiStOZIAMScccveeiiieiieriieieeie e eieeetcete et seeesee e aeseeesaeenaeenne e 32
Automatic Re-binning Optioncceeceevverieneeneeiierieneeieeeenne 32
Random Numbers and HiStOZramscccecvevienienieeniennienie e 33
Adding, Dividing, and Multiplying............ccceeeeienienienenie e 33
PrOJECLIONS ..ovvieiiieeieeiieeteetete ettt ettt e ae e seeesneenseenneens 34
Drawing HiStOZIrams..........ccccvevvreieeienieiiesieeie e seeseeneeeseeennees 34

Setting the STYIE......cccveeiiieiieeie et 34

DIaW OPLIONS . .eveeeiieiiieeiiecie ettt et e st e et e steesbeesbeeesbeesbeesnseessseeenseeas 36
StatiStiCs DISPlaAY...cciiieriiiiiierie ettt et st 37
Setting Line, Fill, Marker, and Text Attributes..........ccceevveervierieeneeenieennne, 38
Setting Tick Marks on the AXIS ...c.ccccveeiiiiiieeiieeeeeciie e 38
Giving Titles to the X, Y and Z AXIiSccceeveereriienierieneee e 38
The SCATLEr PLot OPHON ..coveeeieieeiieeieiieicee ettt ees 39
The ARROW OPHON c..covieniieiieie ettt te e saeseeseeesseenseenneens 39
The BOX OPtioN.....cceeciieiiieiieieiiesiiesieee e eteseeesiee e esesaesaesseesseeseennenns 39
The ERROT Bars OPLiONScccuevieriieriieiieieeiiesiiesieeieeie e seesaeeneeeneeens 39
The COLOT OPtON ..c..veiieiieiieie e sitesieeieeee e eeeeseeeseensesaeseaesseesseensesnnenns 40
The TEXT OPtiOn ...ccccvieeiieiiieeiiecieeeieecieeeteesree et e sreeeveesbeeesaeesnseesnveeas 41
The CONTOUI OPLIONS.....veeiiieerierieeeiieiieenieesieesreesveeeveesseesseesseesseens 42
The LEGO OPtONSveeeiieiiieeiieeieeeieesiee st esreesveesveesveeseseessaeesssaessneens 43
The SURFACE OPLIONS ..c.eveieiieeiieeiieeiieciieeieesreeeveesveeeveesbeessveessseesnveens 44
The Z Option: Display the Color Palette on the Pad..........c.ccceeevreinennnn. 45
Setting the color PalEttec.eevvievieeiiieieeee e 45
Drawing a Sub-range of a 2-D Histogram (the [cutg] Option) 46
Drawing Options for 3-D HiStograms............ccceevevienieneeneeiee e seeseeeeens 46
Superimposing Histograms with Different Scalesccceevevvervrciernnnne. 47
Making a Copy of an HiStogram............ccceeeveeierienienieeieeie e 48
Normalizing HiStOZramscceecuveverienienienieeie et eeesee e eae e eeees 48
Saving/Reading Histograms to/from a file.........ccocceevvecienienienienieeee 48
Miscellaneous OPETationSc.veereeerreeerueesireerieeesteeeseeesreeessreesseeessseessees 48
Profile HiStOGIamSc.eeecvieiiieeiieeiee ettt et save s 49
The TProfile Constructor.........cceevieierienieriieeeee e 49
Example of @ TProfile........ccccvveviieeiiiiiieeiiecieecee e 51
Drawing a Profile without Error Bars..........cccoccevviiviniinienienen. 52

Create a Profile from a 2D Histogramcccceeeevvververeeneeennenne, 52

Create a Histogram from a Profile..........ccccoeninininnninicncnenn 52
Generating a Profile from a TTree.......ccccocevvevinenininencnineenn 52

2D Profiles ..c.eeueeieiiriiieiceeecceee e 52
Example of a TProfile2D histogram..........cccceceevenenercnieeeniennens 53

4 Graphs 55
[1G5 o) PSSR 55
Creating Graphis......ccveeveerieerieeie ettt 55

Graph Draw OPtions..........ceceeeereenieniienieeieeiesieeeeeee e seaeseeenes 55
Continuous line, Axis and Stars (AC*)......cccvevveverienieneeieeeee 56

Bar Graphs (AB).....cooueeeeeieeeeeeeeeeeee e 57

Filled Graphs (AF).....c.oocieieeieieieeie et 57

Marker OPtioNS........cccverieruierieeieeieeeieseereeeeeee e seesseenaeeseennees 58

December 2001 - version 3.1d Table of Contents

Superimposing tWo Graphs........cccceccveeeieerieenieeiieere e 59

TGIapREITOTSeeeviiiiieeie ettt ettt e e e st e e e ssaeeneee s 60
TGraphASYMMETTOTS.ceiiiieiieiiie ettt sve e sbeeeaeesbeeeaee s 61
TMUIIGTAPR ..ottt e e s e 62
Fitting @ Graphcc.oeoviiieiieciee ettt ees 62
Setting the Graph's AXiS Titlec.cccvevieriieiiieieeieee e 63
Z00MING @ GTAPN ...eovieniieiieie ettt aeesseenaeenneennene 63
5 Fitting Histograms 65
The Fit Panel.......cooooiiiiiiiie e 65
The Fit Methodc..oooiiiiiiiie e 66
Fit with a Predefined Function............cccccoeoinininininiinieiciccicncncncene 67
Fit with a User- Defined FUnctioncccceeveeiiniienieniene e 67
Creating a TF1 with a Formula............cocceevieiiiciiiieieeeeee 67
Creating a TF1 with Parameterscccccoevveeiveienienieeeeee 67
Creating a TF1 with a User Function..........ccocoovevinenenceiencnnenn 68

Fixing and Setting Bounds for Parameters..........c..ccceceninencneneeicncnenne. 69
Fitting Sub Rangesccceeiieiiiriiiiiieieeeeeee e 70
Example: Fitting Multiple Sub Ranges..........ccccooevvereniniiiniienieceee 70
Adding Functions to The LiStccccerieriiiiiniinienieeeieeee e 71
CombiniNg FUNCLIONSccocuiieiieiiieeiie ettt see e seee e saae e 71
Associated FUNCHONoiiiiiiiiiiieeecee e 73
Access to the Fit Parameters and Results..........ccccoveevierienieiiicienieeee 74
ASSOCIALEd EITOTS ...ttt 74
FIt STATISTICS ... veuteteierteeterteetcee ettt st 74
6 A Little C++ 75
Classes, Methods and ConStrUCtOrS.coveiuvvrriieeeeeiiiieiieee e e ee e 75
Inheritance and Data Encapsulation..........cccecveeveeeciieiiiieeciie e 76
Creating Objects on the Stack and Heap.......c.cccoceveeniiniiiiiiininieieee 78
7 CINT the C++ Interpreter 83
WHhat 18 CINT? ..ottt st 83
The ROOT Command Line Interfacecccceeeenieninninieniinienceceee 85
The ROOT Script PrOCESSOT ...c..vvieiieeiieeiieeiie ettt siee e 87
Un-Named SCTIPLS ..ouveeiivieeiieeiie et erve e sve e e seae e 87

NAMEA SCTIPLS..ecuvrieerieiiierie et eete ettt sreesreesreesreeseseeseaeennnas 88
Resetting the Interpreter Environmentcoceevevienienenncnicieeneeneeeee 90
A Script Containing a Class Definition.........c.cceceeevevierienenienicneniencneneene. 91
DebUZZING SCIIPLS...eeuvierieiieiieieete e eieeteesteeteetestesaesreesseenseenaesnnessaenseens 93
INSPECHING ODJECLS...evvieieeiieiieiieie et eee ettt ete ettt e e aesenesneenseenseens 94
ROOT/CINT Extensions to CHt.......cccccuevinineninenenieieieienenene e 95
ACLIiC - The Automatic Compiler of Libraries for CINTcccccceeeenee. 96
USAZE -eveenveeeiteeite ettt ettt ettt ettt et e st s e e e e st e nanee s 96
Intermediate Steps and Files.......c.ccccveecvieniiieniieniiecieeee e 97

Moving between Interpreter and Compiler.........cccocevceenienienene. 98

Setting the Include Path..........cccoooveeiiiiiiieiceeeeee e, 99

8 Object Ownership 101
Ownership by Current Directory (gDirectory).......cccocvecverieneeneeniennennnn. 101
Ownership by the Master TROOT Object (gROOT).......ccceevvvevrereeerennen. 102
The Collection of SpecialS........ccceevvierieeiiierieeieeie e 102
Ownership by Other ODJeCtS.......ccvieviiiiiiieeiieiiieeiee et 103
OWNETShip DY the USET.....cccviieiieiiieciiecieeeee et 103
The kCanDelete Bitcccoceriiniiiieniiiieieceeeeeeee 103

The kMustCleanup Bit.........cccovevieriiiriiieniiecieeieeceee e 104

Table of Contents December 2001 - version 3.1d v

10

Graphics and the Graphical User Interface 107
Drawing ODJECLScccvreuieerieriierieeieeieeieste st ente et ete e seeesseeseenseensesneenes 107
Interacting with Graphical ODJectscceecverierierieieeie e 107
Moving, Resizing and Modifying Objects.........ccccevverveneeennnnne. 108
Selecting ODJECSc.eeiieiieieniieiieeee et 109
Context Menus: the Right Mouse Buttoncc.cccceeveviencennen. 110
Executing Events when a Cursor passes on top of an Object..... 112
Graphical Containers: Canvas and Pad............cccoeevveviieeciiiciecie e 114
The Coordinate Systems of a Pad........ccccccvvevveeiiiinciieniieieee, 116
Converting between Coordinates Systems..........ccccceeeeveerveennnnnn 118
Dividing a Pad into Sub-padscccoeeieiirienieieeee e 118
Updating the Padccocovvieriiieieeeeeeeee e 120
Making a Pad Transparentccoeceeeveeverienieeneeseeseesee e 120
Setting the Log Scale is a Pad Attributeccoccoevvevivecieneennns 121
GraphiCal ODJECES......ievieiieiieiieiieie ettt seaeneees 121
Lines, Arrows, and Geometrical Objects.........ccccceeevvercreerieennne. 122
Text and Latex Mathematical EXpressions.........cccceeceeeeveeeieenne. 126
EXamPIe 1.ooeiiiiiiiic e 129
EXaMPIE 2 oottt 130
EXamPIe 3. 131
Text in Labels and TPaves..........ccccveveiiiniinieniececeee e 132
STACTS ..ottt 134
AAXIS c1 ettt ettt e b et ettt sttt 136
Axis Options and Characteristics..........ccveevrrvereeneeneeneerseesnennes 137
AXIS TIIE oo 137
Drawing Axis independently of Graphs or Histograms.............. 137
Orientation of tick Marks 0N aXis.cceeeeeververeerieerieeeesnennees 138
Label POSTHON ...oueeiieiieiiiiiiieei e 138
Label Orientationcooueeierienienieieeieeiesie e e 138
Tick Mark Label POSTHONc..covieiieriiiiieiiriesieiceeeeee e 139
Label FOrmattingcccccoveerienienieieeieeiesieiceieee e 139
Optional GIid.......cceeeeiieiiiieie e 139
Axis Binning Optimization...........ccceceeeveeeeeieneeneeneeneeseesneees 139
Time FOrmatcc.coiriniiiiiiiiiereeceetee e 139
AXIS EXampPIe 1: ..oooviiiiiieiieiee e 141
AXIS EXaMPIE 2: ..ooiiiiiiiieieeee e 142
Graphical Objects AttrIDULES.......c.eecveeierieiiereere e 143
TeXt AtIIDULES ..ottt 143
Line AIIDULES ..ouveeniiiiiiiie e 148
Fill AtEIDULES ..o 149
Color and Color Palettes.........ccceevieririiinienienieieeiceieeeeseeeen 150
The Graphical EdItOr.......c.coccuiiiiiiiiieniiecieceieeceeeee e 153
Copy/Paste With DrawCloneccceeeviveeiieeiiieeiie et cveeeieesvee e 155
Copy/Paste Programmatically...........cccoceeviriiniiniinnininieneeee, 156
7S o311 SRR 157
The PostScript INterface........cooovevieriieriieiieiesieeeee e 158
Special Charactersccveveriereesieeie e 159
Multiple Pictures in a PostScript File: Case 1c..ccccoeveeuennene 160
Multiple Pictures a PostScript File: Case 2........ccccocevevenenennenn 161
Create or Modify @ StYle.......oocvieiieiieieciieieee e 161
Folders And Tasks 165
FOLAETS ..ttt st 165
WHhy Use FOLAETS?ooiieiieiieieeiece ettt 165
HOW t0 US@ FOIARTS ...cueouiiiiiiiiiniiniiiceieccccsceesceeetetee e 166
Creating a Folder Hierarchyccooveiviniiniinieeeeeieeeen 166
Posting Data to a Folder (Producer)..........ccceccvvvevienienienirene, 167
Reading Data from a Folder (Consumer)...........ccccceveeneeneennnne. 167
TASKS ettt et e 168

vi

December 2001 - version 3.1d Table of Contents

11

12

Execute and Debug Taskscccceevuiiiiiiiiiinieieieceeeceeee e 171

Input/Output 173
The Physical Layout of ROOT Files........cccccvvienienieiiieienie e 173
The File Headercccoceeviiiiininiiniiineciciciccncesceceeeeee 175
The Top Directory Description...........cceeeeveeevveercreeniveenveenveennnes 175
The Histogram Recordscooceeiiriiiiniinienienceecceeee 175
The Class Description List (StreamerInfo List).........cc.cceeeueeeeee. 176
The List of Keys and The List of Free Blocks.........c.ccccvveneeeee. 178
File RECOVETY ..cuviiiiiiciieeiiecte ettt 178
The Logical ROOT File: TFile and TKey......c.ccccvveviienieeiieeieeiieeveeee, 178
The Current DIreCtory........ccevveruierieriieieeie e see e 182
Objects in Memory and Objects on DisK.........ccccveeevecivniennenen. 183
Saving Histograms to DisKccceccvvvivroiiiiienieieccieeieeees 185
Histograms and the Current Directory..........cccceerenerceeeneenenn 187
Saving Objects t0 DiSKccvevieriieiiiiieeiecieseecec e 188
Saving Collections to DisKccceeeerieriiiiierierieieieeieeieiene 188
A TFile Object going Out 0of SCOPE....cccveeververierieneeieieeee 188
Retrieving Objects from DisK.........cceevuievcieeiiencieeieceeeieeee, 189
Subdirectories and Navigation..........c.cceceereeneerenieenceneeneeiene 189
STIEAIMETS ..ttt ettt ettt ettt st e st e st e bt et saeesaeesbeenaeenteeas 192
Streaming POINters........ccocvevieveeiiiiiiiiieneseeecee e 192
Automatically Generated Streamersc..coceeereeereeeeieneennenn 193
Transient Data Members (/1)coooveveeeiecienieeiesieeee e 194
The Pointer To ObJects (/=>)...cccvirierieieieeie e 194
Variable Length Array.......cccocevveiieriieiieieeieceeeeeeee e 194
Prevent SPIttNG (/]|).veevereeeeeieeeienieeeeee e 195
Streamers With Special Additions..........cccccevverierieecieecienieienns 195
WItING ODJECTS....eiiiiiiiiiiieeieiecee e 196
Ignore Object Streamerscoeeveerieerieeienieniieneeeee e 197
Streaming @ TCIONESAITAY ...cc.eeveruienieniieieeec e 197
Schema EVOIUtionooieiiiiiiiiiiiieeeeeeese e 199
The StreamerInfo Classc.ccooeerieiiiiiniiiiieneeeeeeee e 200
Example: TH1 StreamerInfo.........cccoeveiievciieecienciieiiecieeeieene, 201
The StreamerInfoElement Classcccoeeeveievieiieneeneeeee, 201
Optimized StreamerInfoccoovviiiiiiienieieee e 202
Automatic Schema EvOlutionccccecvevieneninininicncnineennn 202
Manual Schema EvOlution..........c.cceceveeeievienenininienenceieeenn 203
Building Class Definitions With The StreamerInfo.................... 203
Example: MaKeProject.......ccoovivvierieiieiieieeieeieseeeee e 203
Migrating to ROOT 3......ooiiiiiiiie e 207
Compression and Performancecocveeveevciieeiieicieecie e 208
Accessing ROOT Files Remotely via a 100tdccccveeveeerciieecieencieeeieeene. 209
TNetFile URL....ccoiiiiiiiieeeeee e 209
Remote Authenticationccecuevierieiieiienienieneeeeee e 209
A SIMPIE SESSIONvieeiiiiieieciieiieie ettt 210
The rootd Daemoncocceeeieiininineneeicceeseeeeeeee e 210
Starting rootd via inetdccceevieeieeiieiieeiereec e 211
Command Line Arguments for rootdccocvevieviiecieecienienieennenn 211
Reading ROOT Files via Apache Web Server..........ccccooeviinincnncnnne. 211
Using the General TFile::Open() Function.........cccccoccevoeenennne. 212
Trees 213
Why should you Use @ TIee?cccveevuiiirieeiiieiecie e e 213
F N 11010 (S N TSP SRPR 214
Show An Entry with TTree::ShoW......ccccvvivieiiiieeiieciieeieeeieeeee e 215
Print the tree structure with TTree::Printcccoceviviiniininiiinceee 215
Scan a Variable the tree with TTree::Scan.......c.ccoveevercenienieienieneeee 216
The TTEE VIBWET ..ottt 216

Table of Contents

December 2001 - version 3.1d vii

13

Creating and Saving TIESc.ceouirierierienieneeie ettt 219

Creating a Tree from a Folder Hierarchy..........cc.ccccccevinenenen. 220
ATLOSAVE ..ttt ettt ettt ettt 220
BIanches... ..o 220
Adding a Branch to hold a List of Variables...........ccceccevvvnienienineene, 221
Adding a TBranch to hold an Objectcccoevveeiieiinienieieeee e 222
Setting the Split-levelc..ccevieiieriieeceee e 223
Exempt a Data Member from Splitting...........cccceeeverevervenrennne. 225
Adding a Branch to hold a TClIoNesAITayc..coceeerervereennenn 225
Identical Branch Names.......c..cooceerieiinienienieneieeeee e 225
Adding a Branch with @ Folder..........c..cooooiiiiiiiiniiiceeee, 226
Adding a Branch with @ TLiSt....c.ccoooiiiiniiniiiiceeeeee e 226
Examples For Writing and Reading Treesccccceoeevverenieniencenceene 226
Example 1: A Tree with Simple Variables..........ccccccveeveeecienieeniieeieenee. 227
Writing the TTee.......cooviiiiiiiiiiee e 227
VIeWING the TIEC ..ccvveviiiieieeieiere et 228
Reading the Tree......ooovioieiierieiieieee e 230
Example 2: A Tree with @ C StrUCTUIEooverieiieiieieeie e 231
WIiting The TIEe ..c.vveviiieeieeieeeeee e 233
ANALYSIS .ottt 235
Example 3: Adding Friends to Treescccocvevveriieriiecieeiesiesieeeeee e 237
Adding a Branch to an Existing Tree.........ccoceveenernenneneneenne. 237
TTree:: AddFriend........occooviiiiniiiiiieeeee e 237
Example 4: A Tree with an Event Classc.ccccceeveiierciieniienieenie e, 241
The Event Classcocuiiiiiienieiieieeeeeee e 241
The EventHeader Class........coccovieiieiiiiiiiiienienceeceee e 242
The Track Classcoceeereririeiinereneseeeeeeeesee e 242
Writing the TTee.....c.eevviieiieieeieeiee e 243
Reading the Tree.......oovvieiierieieieee e 244
Trees iN ANALYSIS.....occvieieeieeiieieete ettt ettt snaeenaesneenes 246
Simple Analysis using TTree: :DIawccccecvvereerierierieneere e 246
Using Selection with TTree:Drawcccccveeeevienienveneeieeeene 247
Using TCut Objects in TTree:Draw........cccceeeveenieniencnnennee. 248
Accessing the Histogram in Batch Mode...........cccccooeviinnnnne 249
Using Draw Options in TTree:Drawc..ccccevvevieneencenenneenne. 249
Superimposing two HiStograms...........ceceeveroenienieenceneencenenns 250
Setting the Range in TTree::Draw........ccceeeveeeieeiieecieenieenieens 250
TTree::Draw EXamples.......cccveeevierciieeiiieniieeiiecieeeiee e 250
Filling @ HiStOZramccccvevueeireiesiieiieieeie e 258
Projecting @ HiStOZramcceccveruieriieriieiieeieeie e 259
Using TTree::MaKeCIassc.ecverierieieeieeiesieie et 260
Using TTree::MaKeSeleCtorcuevveriieriieiieieeiieieeie e 265
Performance Benchmarkscoccoeveriiiiniiiininincicicccncecceens 266
Impact of Compression on /Oc.cocvieviieiiieniieriieceecee e 267
CRAINS .ttt ettt nbe e an 268
TChain:: AddFriend.........ccocoiiiiiiiiiiiieeeee e 269
Adding a Class 271
The Role 0f TODJECEcouviiiiiiiriiniieietceesere ettt 271
Introspection, Reflection and Run Time Type Identification271
COlIECHIONS ..ttt 272
INPUL/OULPUL. ..ttt 272
Paint/DIaWooiuiiiiiiiiiiiiieeee e e 272
GetDrawOPtIONeeeeieeiieeie ettt eaee s 272
Clone/DrawClIOnecooueerueerierienieiie e 272
BIOWSE ...ttt 272
SAVEPTIMILIVE.eeuiiiiiiiiiieiieieeieeeee et 273
GetODJECtINDO ..o.veeeeieiieiececeeee e 273
ISFOLAET ...t 273

viii

December 2001 - version 3.1d Table of Contents

14

15

Bit Masks and Unique IDcccceeeevieiciienciieiiiecee e
IMOTIVATION ...ttt ettt st
The Default ConStruCtOr.c..vevuiiiiiiiiieeieieeeeeeee e
rootcint: The CINT Dictionary Generator.............cocceeeververeeerueeeennes
Adding a Class with a Shared Libraryc.ccoecevivenvereecienienenee.

The LinkDef.h Filecocoviiniiieieeeceeeee e
Adding a Class With ACLICccccooieiierieeieeeeeeeeee e

Collection Classes

Understanding ColleCtionsceoeeruierierienienienieee e
General CharacteriStiCSeivierueeriierieeriienreeseeeneeeseeeseeesieeesaeeenns
Determining the Class of Contained Objectscccceceeeeveicienncnne.
Types of ColleCtionscceevveeiieriieieeieeie e
Ordered Collections (SEqUENCES)........ccververeeerveeverireneennns
Sorted ColleSCHON.ccuereieriieiieieeie e
Unordered ColleCtionsccceevveeveeienienienieenieeieeee e
Iterators: Processing @ ColleCtion............cceevvveevreieeienienienieeieeee e
Foundation ClaSSesccueevvierciieiiieeeiiesieeeieesreeeieesreesveesveesnveens
TCOIECHON ...ttt eeee e s
1 7S] ¢ 110 OSSR
A Collectable Class.......cecvierieeiieerieeiieeerieeeieeeieeesieeeieeeveeeeeeevee s
The TIter Generic Iterator........cccuvevveeriierieeeieecie e
The TList COllECtONc.veeveieieiieiieit et
Tterating OVer @ TLiSt.....c.cccvevieriieieeie e
The TObjArray Collection..........cccvevuveeieeienieriieieeie et
TClonesArray — An Array of Identical Objectscccceceeeeeevenenne.
The Idea Behind TCIONESATITAYcceevvveeeeieeieeieeeeeeeenes
Template Containers and STLc.ccccvevierienienieiececeee e

Physics Vectors

The Physics Vector CIassesccveeuerierieniieriieieeiesieseesieeae e
TVECLOIS .ot e e e
Declaration / Access to the componentscccceevveeneenee.
Other Coordinates..........eeeveueeeeeeieeeeeeeeeeeeeee e e e e
Arithmetic / COMPATISONocueervreeieiieieeiesresieeieeee e
Related VECtOrS.....oouvvieieirieeceeeeeeeeee e
Scalar and Vector Products........ccocvvveeiiiiiiiineieeieeieeieeeeen.
Angle between TWo VECtOrs.......oooueveerieneenieenieniciieneee
Rotation around AXESccooevuvveeiieeieeiieeeeeee e
Rotation around a VeCtor......ccuvvvvieiiiiiiiiiieee e
Rotation by TROtationcccceeevvieriieeiieeiieeieeie e
Transformation from Rotated Framecccoeevvvvveenennn.
TROTALION ... eeeaaeeeennns
Declaration, Access, COMPATISONSceecverevereeereeereeenenne
Rotation Around AXESccooveeeeeveeeeeeieeeeeieee e eeereeen
Rotation around Arbitrary AXiScceeeveveervereereeeneeenenns
Rotation 0f Local AXES.......coovveeeieeieeeeieeeeeeeee e
Inverse RoOtation............eeviiiiiiiiiieiiieceeeceeeee e
Compound Rotationscceeeveereieeriiieesieeeiie e esveenneenns
Rotation of TVECtOr3......ooovvviiiiiieiieeieecieeeee e
TLOTENtZV ECLOT ...cceeieieeeieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee
DEClaratioN.......ccooviieiiiiieiiee et
Access t0 COMPONENLS........cccveevierierieiierreenreereereeenesene e
Vector Components in non-Cartesian Coordinates.............
Arithmetic and Comparison Operatorsc.ccoceeeeeeneenne.

Magnitude/Invariant mass, beta, gamma, scalar product

Lorentz BOOStcouuvvveeiiieeeceeeee e
ROTAtIONS ...
MISCEIIANEOUS ...

Table of Contents

December 2001 - version 3.1d

16

17

18

19

20
21
22

B 0] (<) 1174 2001 7215 (o) 1 WSS 310

DeClaration........c.eerieriiiiiiieeiee e 310
Access to the matrix Components/Comparisonsee..... 311
Transformations of a Lorentz Rotation...........cccceeevevvervenerennnne, 311
Transformation of a TLorentzZVector...........ccceeevevvereeneeneeeneenne 312
Physics Vector EXamplecccvevieieiieiienieieieeeee e 312
The Tutorials and Tests 313
SROOTSY S/AULOTTALS ...ttt 313
SROOT SY S/ACSL. ettt sttt sttt e e 314
Event — An Example of a ROOT Applicationc.ccccvveenvenneee. 315
stress - Test and Benchmarkcccoooeiiiiiiiiiiiiiie, 318
guitest — A Graphical User Interfaceccccoeevevvenvenieneenne, 320
Example Analysis 321
EXPLanationccccuieeiieiiiieeiieciie ettt eeas 321
T3 |01 PSPPSR 324
Networking 329
Setting Up @ CONNECHIONeveereieeieeiieeieeiieeeeieee e see e esseeeeseesseenseenseens 329
Sending Objects over the NetWorkcccoecvveieiieiienieece e 330
Closing the CONNECTIONeccvieiiiieeiieeiieeee e etee e eaee e eeeeeereeeee s 331
A Server with Multiple SOCKELScccvieeviiiiiiciiecieceecee e 332
Writing a Graphical User Interface 333
The New ROOT GUI ClaSS€S.....ccuveeerieeeieriieiieieeieeiieeieenieeee e sene e e 333
XCLASS'DS ettt st 333
ROOT INtEGIAtION ...c.evieieeiieeiieciieieeie et stee et ete e seenseenaesneeenes 334
Abstract Graphics Base Class TGXWccccocvevviievciienieenieennen. 334
Further changes:cccoovvieiiiiiiecccece e 335
A Simple EXaAMPIE ..cccuviiiiiiiiiiiecieectee ettt 336
MYMBINFTLAME .oceitiiiieeitieeeeiiee ettt e et e e e e e e eaeeeeeaaeeeenes 336
Laying out the Frame.........ccccceevveriieciieciieieeieeeeeeee e 337
AddINg ACLIONS.....ccvieiieeieeiieeieeie ettt 338
The ReSult.....cc.ooiiiiiiiiiiie e 338
The Widgets in Detailcccveeiiiieiiiiiieeiecieeee et 338
Example: Widgets and the Interpreter.........oocvveevieecieeciieeciieeeeecee e 339
RQuAant EXAMPIE.....ccccvieiiiiiiieiiiecieeeie ettt 340
RETETEINCES . ..cuieiei et 340
Automatic HTML Documentation 341
PROOF: Parallel Processing 343
Threads 345
Threads and PrOCESSESccveurrieiieiieciereeee et 345
Process Properties........cccuerierieriieniieieeieeieeiiesieeiee e 345
Thread Properties........cveeveeriieiieeeiiesieeeieesee e sre e 346
The Initial Threadcccooiiiiiiiiieeee e 346
Implementation of Threads in ROOTccccooveiiiiiiieiciieniiecieeeeeeee, 346
INStAllAtionoc.eeriiiiiiii e 346
CLASSES ..eentteuieeiieeite ettt ettt ettt ettt ettt st sae e bt et ettt eaee b e naean 347
TThread for Pedestrians...........ccoecvvieiierieniesie e e 347
Loading: ...oovieiieieee et e 348
CICALING: «.vvvevvieiieetieeeeeeie et et et e e ete s tesaeesteenseenseenseseaesseenseensens 348
RUNNING: ..ot 348

December 2001 - version 3.1d Table of Contents

23

24

TThread in More Detailcc..vvvviiiiiiiiiiieiiceeeeeeee e 349

ASYNChIONOUS ACLIONS.....eveeviierereeriieeriieerieesre et e ereesereesaeeeenas 349
Synchronous Actions: TCondition...........cccceeevveeriiencieencieenneens 349
X1iD CONNECHIONS ... eee e e enns 350
Canceling a TThread.........cooovevieiiieciiiiecieceeeeee e 351
Advanced TThread: Launching a Method in a Threadccocceceeeenes 352
KNOWN ProODIEemS.ooovviiiieieie e 354
GLOSSATY ...nvientieeieeiieeie sttt ettt et et et et e e eseesesnaesaeesseenseenseenseensenneensees 354
PrOCESS .. 354
TRECAA ... 354
(01033161 113 1<) 110 2SR 354
ParalleliSIM ...ouvveeiiiiiiieiiee e 354
TS 118 ¢ o L SRR 354
Thread-specific data.........cccoevieriieriieiiieiieeee e 355
SYNCHrONIZAtIONeeivieeiieeiieeiie ettt eesae e 355
Critical SECHOMNvveeieeeeeeeeeee e 355
IMIUEEX ..ttt et e e e e et e e e e e e e eaaraeeeeeas 355
SEMAPNOTE ..ottt enee e 355
Readers/Writer LOCK.........oooouiiiieiiiieeeee e 355
Condition Variable............oooviieeoeieiicieeeeeeeeeee e 355
Multithread safe 1eVelS.........ooovveieeiviiieeieeeeeeeeeeee e 356
DEAdIOCK .. .eieeiiiiiiiieeeeee e 356
IMULEIPTOCESSOT ...veeeveeiiieeieeeieeereeeveeeteeereeeveesebeeenreesnbeessseennnas 356
List of EXamPle flleScccuiireiiiiiieiiieeiiecieeeieecte et 357
Example Mhs3occoioiiiiiiieiieeece s 357
Example conditionscceeeveerveeniieniienie e e 357
Example TMhS3oooiiiiiiieieeec e 357
Example CalcPiThread..........ccoocoevieviieiieiiciecieceeeeeee e 357
Appendix A: Install and Build ROOT 359
ROOT Copyright and Licensing Agreement:cccceeveereenverruenneneenne 359
Installing ROOTooiiiiiiieieece e 360
ChOOSING @ VEISION....c.uiiiiiiiiiiiiietieteeteee ettt 360
Installing Precompiled Binariesccoecevienieniniinienieiienceceeee 361
Installing the SOUICEecveiieiieieeie ettt 361
More Build Optionscccvevieriieniieieeieeieeiienieeieeee e 362
Setting the Environment Variablesccoovveviriiviieiienieieeeceeeseeine 363
Documentation to Downloadccccoooeeveiiiiiiieieiiieeeeee e 364
Index 367

December 2001 - version 3.1d Xi

1 Introduction

In the mid 1990's, René Brun and Fons Rademakers had many years of
experience developing interactive tools and simulation packages. They had
lead successful projects such as PAW, PIAF, and GEANT, and they knew the
twenty-year-old FORTRAN libraries had reached their limits. Although still
very popular, these tools could not scale up to the challenges offered by the
Large Hadron Collider, where the data is a few orders of magnitude larger
than anything seen before.

At the same time, computer science had made leaps of progress especially in
the area of Object Oriented Design, and René and Fons were ready to take
advantage of it.

ROOT was developed in the context of the NA49 experiment at CERN. NA49
has generated an impressive amount of data, around 10 Terabytes per run.
This rate provided the ideal environment to develop and test the next
generation data analysis.

One cannot mention ROOT without mentioning CINT its C++ interpreter.
CINT was created by Masa Goto in Japan. It is an independent product,
which ROOQOT is using for the command line and script processor.

ROOT was, and still is, developed in the "Bazaar style", a term from the book
"The Cathedral and the Bazaar" by Eric S. Raymond. It means a liberal,
informal development style that heavily leverages the diverse and deep talent
of the user community. The result is that physicists developed ROOT for
themselves, this made it specific, appropriate, useful, and over time refined
and very powerful.

When it comes to storing and mining large amount of data, physics plows the
way with its Terabytes, but other fields and industry follow close behind as
they acquiring more and more data over time, and they are ready to use the
true and tested technologies physics has invented. In this way, other fields
and industries have found ROOT useful and they have started to use it also.

The development of ROOT is a continuous conversation between users and
developers with the line between the two blurring at times and the users
becoming co-developers.

In the bazaar view, software is released early and frequently to expose it to
thousands of eager co-developers to pound on, report bugs, and contribute
possible fixes. More users find more bugs, because more users add different
ways of stressing the program. By now, after six years, many, many users
have stressed ROOT in many ways, and it is quiet mature. Most likely, you
will find the features you are looking for, and if you have found a hole, you
are encouraged to participate in the dialog and post your suggestion or even
implementation on roottalk, the ROOT mailing list.

The ROOT Mailing List

You can subscribe to roottalk, the ROOT Mailing list by registering at the
ROOT web site: http://root.cern.ch/root/Registration.phtml.

Introduction December 2001 - version 3.1d 1

This is a very active list and if you have a question, it is likely that it has been
asked, answered, and stored in the archives. Please use the search engine
to see if your question has already been answered before sending mail to
root talk.

You can browse the roottalk archives at:
http://root.cern.ch/root/roottalk/AboutRootTalk.html.

You can send your question without subscribing to: roottalk@root.cern.ch

Contact Information

This book was written by several authors. If you would like to contribute a
chapter or add to a section, please contact us. This is the first and early
release of this book, and there are still many omissions. However, we wanted
to follow the ROOT tradition of releasing early and often to get feedback early
and catch mistakes. We count on you to send us suggestions on additional
topics or on the topics that need more documentation. Please send your
comments, corrections, questions, and suggestions to rootdoc@root.cern.ch.

We attempt to give the user insight into the many capabilities of ROOT. The
book begins with the elementary functionality and progresses in complexity
reaching the specialized topics at the end.

The experienced user looking for special topics may find these chapters
useful: Networking, Writing a Graphical User Interface, Threads, and
PROOF: Parallel Processing.

Because this book was written by several authors, you may see some
inconsistencies and a "change of voice" from one chapter to the next. We felt
we could accept this in order to have the expert explain what they know best.

Conventions Used in This Book

We tried to follow a style convention for the sake of clarity. Here are the few
styles we used.

To show source code in scripts or source files:

cout << " Hello" << endl;
float x = 3.;

float y = 5.7
int i=101;
cout <<" x = "<K<%<L" y = "<K<y<<" 1 = "<<i<< endl;

To show the ROOT command line, we show the ROOT prompt without
numbers. In the interactive system, the ROOT prompt has a line number (root
[12]), for the sake of simplicity we left off the line number.

Bold monotype font indicates text for you to enter at verbatim.

root[] TLine 1
root[] 1l.Print()
TLine X1=0.000000 Y1=0.000000 X2=0.000000 Y2=0.000000

Italic bold monotype font indicates a global variable, for example
gDirectory.

2 December 2001 - version 3.1d Introduction

We also used the italic bold font to highlight the comments in the code
listing.

When a variable term is used, it is shown between angled brackets. In the
example below the variable term <library> can be replaced with any library in
the SROOTSYS directory.

SROOTSYS/<library>/inc

The Framework

ROOT is an object-oriented framework aimed at solving the data analysis
challenges of high-energy physics. There are two key words in this definition,
object oriented and framework. First, we explain what we mean by a
framework and then why it is an object-oriented framework.

What is a Framework?

Programming inside a framework is a little like living in a city. Plumbing,
electricity, telephone, and transportation are services provided by the city. In
your house, you have interfaces to the services such as light switches,
electrical outlets, and telephones. The details, for example the routing
algorithm of the phone switching system, are transparent to you as the user.
You do not care, your are only interested in using the phone to communicate
with your collaborators to solve your domain specific problems.

Programming outside of a framework may be compared to living in the
country. In order to have transportation and water, you will have to build a
road and dig a well. To have services like telephone and electricity you will
need to route the wires to your home. In addition, you cannot build some
things yourself. For example, you cannot build a commercial airport on your
patch of land. From a global perspective, it would make no sense for
everyone to build their own airport. You see you will be very busy building the
infrastructure (or framework) before you can use the phone to communicate
with your collaborators and have a drink of water at the same time.

In software engineering, it is much the same way. In a framework the basic
utilities and services, such as 1/0 and graphics, and are provided. In addition,
ROOT being a HEP analysis framework, it provides a large selection of HEP
specific utilities such as histograms and fitting. The drawback of a framework
is that you are constrained to it, as you are constraint to use the routing
algorithm provided by your telephone service. You also have to learn the
framework interfaces, which in this analogy is the same as learning how to
use a telephone.

If you are interested in doing physics, a good HEP framework will save you
much work.

Below is a list of the more commonly used components of ROOT:

Command Line Interpreter
Histograms and Fitting
Graphic User Interface widgets
2D Graphics

I/0

Collection Classes

Script Processor

There are also less commonly used components, these are:

e 3D Graphics

Introduction December 2001 - version 3.1d 3

Parallel Processing (PROOF)

Run Time Type Identification (RTTI)
Socket and Network Communication
Threads

Advantages of Frameworks

The benefits of frameworks can be summarized as follows:

o Less code to write: The programmer should be able to use and reuse
the majority of the code. Basic functionality, such as fitting and
histogramming are implemented and ready to use and customize.

e More reliable and robust code: Code inherited from a framework has
already been tested and integrated with the rest of the framework.

e More consistent and modular code: Code reuse provides consistency
and common capabilities between programs, no matter who writes them.
Frameworks also make it easier to break programs into smaller pieces.

e More focus on areas of expertise: Users can concentrate on their
particular problem domain. They don't have to be experts at writing user
interfaces, graphics, or networking to use the frameworks that provide
those services.

Why Object-Oriented?

Object-Oriented Programming offers considerable benefits compared to
Procedure-Oriented Programming:

e Encapsulation enforces data abstraction and increases opportunity for
reuse.

e Sub classing and inheritance make it possible to extend and modify
objects.

o Class hierarchies and containment hierarchies provide a flexible
mechanism for modeling real-world objects and the relationships among
them.

o Complexity is reduced because there is little growth of the global state,
the state is contained within each object, rather than scattered through
the program in the form of global variables.

e Objects may come and go, but the basic structure of the program
remains relatively static, increases opportunity for reuse of design.

Installing ROOT

The installation and building of ROOT is described in Appendix A: Install and
Build ROQOT. You can download the binaries (7 MB to 11 MB depending on
the platform), or the source (about 3.4 MB). ROOT can be compiled by the
GNU g++ compiler on most Unix platforms.

ROOQOT is currently running on the following platforms:

e Intel x86 Linux (g++, egcs and KAI/KCC)

. Intel Itanium Linux (g++)

e HP HP-UX 10.x (HP CC and aCC, egcsl.2 C++ compilers)
e TIBM AIX 4.1 (xlc compiler and egcsl.2)

e Sun Solaris for SPARC (SUN C++ compiler and egcs)

e Sun Solaris for x86 (SUN C++ compiler)

e Sun Solaris for x86 KAI/KCC

e Compaqgq Alpha OSF1l (egcsl.2 and DEC/CXX)

4 December 2001 - version 3.1d Introduction

Compaq Alpha Linux (egcsl.2)

SGI Irix (g++ , KAI/KCC and SGI C++ compiler)
Windows NT and Windows95 (Visual C++ compiler)
Mac MkLinux and Linux PPC (g++)

Hitachi HI-UX (egcs)

Lynx0OS

MacOS (CodeWarrior, no graphics)

Introduction

December 2001 - version 3.1d

The Organization of the ROOT Framework

Now we know in abstract terms what the ROOT framework is, let's look at the
physical directories and files that come with the installation of ROOT.

You may work on a platform where your system administrator has already

installed ROOT. You will need to follow the specific development

environment for your setup and you may not have write access to the
directories. In any case, you will need an environment variable called
ROOTSYS, which holds the path of the top directory.

> echo $ROOTSYS
/home/root

cint
makecint
new
proofd
proofserv
rmkdepend
root
root.exe
rootcint
root-config

Lrootd

* Optional
Installation

In the ROOTSYS directory are examples, executables, tutorials, header files,

and if you opted to download the source it is also here. The directories of

special interest to us are bin, tutorials, 1ib, test,and include. The
diagram on the next page shows the contents of these directories.

bin—Ilib=— tutorials

libCint.so
libCore.so
libEG.so
*libEGPythia.so
*libEGPythia6.so
libEGVenus.so
libGpad.so
libGraf.so
libGraf3d.so
libGui.so
1ibGX11.s0
*libGX11TTF.so
libHist.so
libHistPainter.so
libHtml.so
libMatrix.so
libMinuit.so
libNew.so
libPhysics.so
libPostscript.so
libProof.so
*libRFIO.so
*libRGL.so
libRint.so
*libThread.so
libTree.so
libTreePlayer.so
libTreeViewer.so
*libttf.so
1ibX3d.so
libXpm.a

\\\\\\\\\;\\\\\\\‘

Aclock.cxx
Aclock.h
Event.cxx
Event.h
EventLinkDef.h
Hello.cxx
Hello.h
MainEvent.cxx
Makefile
Makefile.in
Makefile.win32
README
TestVectors.cxx
Tetris.cxx
Tetris.h
eventa.cxx
eventb.cxx
eventload.cxx
guitest.cxx
hsimple.cxx
hworld.cxx
minexam.cxx
Stress.cxx
tcollbm.cxx
teollex.cxx
test2html.cxx
tstring.cxx
vlazy.cxx
vmatrix.cxx
vvector.cxx

$ROOTSYS
T |
test include
EditorBar.C fitslicesy.C ntuplel.C
Ifit.C formulal.C oldbenchmarks.C
analyze.C framework.C pdg.dat
archi.C games.C psexam.C
arrow.C gaxis.C pstable.C
basic.C geometry.C rootalias.C
basic.dat gerrors.C rootenv.C
basic3d.C gerrors2.C rootlogoff.C
benchmarks.C ~ graph.C rootlogon.C
canvas.C hldraw.C rootmarks.C
classcat.C hadd.C runcatalog.sql
cleanup.C hclient.C runzdemo.C
compile.C hcons.C second.C
copytree.C hprod.C shapes.C
copytree2.C hserv.C shared.C
demos.C hserv2.C splines.C
demoshelp.C hsimple.C sqlcreatedb.C
dialogs.C hsum.C sqlfilldb.C
dirs.C hsumTimer.C sqlselect.C
ellipse.C htmlex.C staff.C
eval.C i0.C staff.dat
event.C latex.C surfaces.C
execl.C latex2.C tcl.C
exec2.C latex3.C testrandom.C
feynman.C manyaxis.C tornado.C
fildir.C multifit.C tree.C
file.C myfit.C two.C
fillrandom.C na49.C xyslider.C
first.C na49geomfile.C xysliderAction.C
fitl.C na49view.C zdemo.C
fitl_C.C na49visible.C hlanalysis.C

December 2001 - version 3.1d

Introduction

$ROOTSYS/bin

The bin directory contains several executables.

root shows the ROOT splash screen and calls root .exe.

root.exe is the executable that root calls, if you use a debugger such
as gdb, you will need to run root . exe directly.

rootcint is the utility ROOT uses to create a class dictionary for CINT.
rmkdepend is a modified version of makedepend that works for C++. It
is used by the ROOT build system.

root-config is a script returning the needed compile flags and
libraries for projects that compile and link with ROOT.

cint is the C++ interpreter executable that is independent of ROOT.
makecint is the pure CINT version of rootcint. It is used to generate
a dictionary. It is used by some of CINT's install scripts to generate
dictionaries for external system libraries.

proofd is a small daemon used to authenticate a user of ROOT's
parallel processing capability (PROOF).

proofserv is the actual PROOF process, which is started by proofd
after a user, has successfully been authenticated.

rootd is the daemon for remote ROOT file access (see TNetFile).

$ROOTSYS/lib

There are several ways to use ROOT, one way is to run the executable by
typing root at the system prompt another way is to link with the ROOT
libraries and make the ROQOT classes available in your own program.

Here is a short description for each library, the ones marked with a * are only
installed when the options specified them.

libCint. so is the C++ interpreter (CINT).

libCore. so is the Base classes

1ibEG. so is the abstract event generator interface classes

*11ibEGPythia. so is the Pythiab event generator interface

*1ibEGPythia6. so is the Pythia6 event generator interface

1ibEGVenus. so is the Venus event generator interface

libGpad. so is the pad and canvas classes which depend on low level
graphics

libGraf. so is the 2D graphics primitives (can be used independent of
libGpad. so)

libGraf3d. so is the3D graphics primitives

1ibGui.so is the GUI classes (depend on low level graphics)

1ibGX11.so is the low level graphics interface to the X11 system

*1ibGX11TTF.so is an add on library to 11bGx11. so providing
TrueType fonts

libHist.so is the histogram classes

libHistPainter.so is the histogram painting classes

libHtml. so is the HTML documentation generation system

libMatrix.so is the matrix and vector manipulation

libMinuit.so - The MINUIT fitter

libNew. so is the special global new/delete, provides extra memory
checking and interface for shared memory (optional)

libPhysics.so is the physics quantity manipulation classes
(TLorentzVector, etc.)

libPostScript.so is the PostScript interface

Introduction

December 2001 - version 3.1d 7

- 1libProof.so is the parallel ROOT Facility classes

- *1ibRFIO.so is the interface to CERN RFIO remote I/O system.

- *1ibRGL. so is the interface to OpenGL.

- 1libRint.so is the interactive interface to ROOT (provides command
prompt).

- *libThread.so is the Thread classes.

- 1libTree.so is the TTree object container system.

- libTreePlayer.so is the TTree drawing classes.

- libTreeViewer. so is the graphical TTree query interface.

- 1ibX3d.so is the X3D system used for fast 3D display.

Library Dependencies

The libraries are designed and organized to minimize dependencies, such
that you can include just enough code for the task at hand rather than having
to include all libraries or one monolithic chunk.

The core library (1ibCore. so) contains the essentials; it needs to be
included for all ROOT applications. In the diagram, you see that 1ibCore is
made up of Base classes, Container classes, Meta information classes,
Networking classes, Operating system specific classes, and the ZIP
algorithm used for compression of the ROOT files.

The CINT library (1ibCint. so) is also needed in all ROOT applications, but
libCint can be used independently of 1ibCore, in case you only need the
C++ interpreter and not ROOT. That is the reason these two are separate.

A program referencing only TObject only needs 1ibCore and 1ibCint.
This includes the ability to read and write ROOT objects, and there are no
dependencies on graphics, or the GUI.

Root CORE classes |
Base Eon |Meta ||W|-- Cint

|nNT

oo] [Fst |
RFIO

\
i\ Graf

Grafad | GPad

TreePlayer

TreeViewer

Gy [P emmn

December 2001 - version 3.1d Introduction

A batch program, one that does not have a graphic display, which creates,
fills, and saves histograms and trees, only needs the core (1ibCore and
libCint), 1ibHist and 1ibTree. If other libraries are needed, ROOT
loads them dynamically. For example if the TreeViewer is used,
libTreePlayer and all the libraries the TreePlayer box below has an
arrow to, are loaded also. In this case: GPad, Graf3d, Graf,
HistPainter, Hist, and Tree. The difference between 1ibHist and
libHistPainter is that the former needs to be explicitly linked and the
latter will be loaded automatically at runtime when needed. In the diagram,
the dark boxes outside of the core are automatically loaded libraries, and the
light colored ones are not automatic. Of course, if one wants to access an
automatic library directly, it has to be explicitly linked also.

An example of a dynamically linked library is Minuit. To create and fill
histograms you need to link 1ibHist. If the code has a call to fit the
histogram, the "Fitter" will check if Minuit is already loaded and if not it will
dynamically load it.

$ROOTSYS/tutorials

The tutorials directory contains many example scripts. They assume some
basic knowledge of ROOT, and for the new user we recommend reading the
chapters: Histograms and Input/Output before trying the examples. The more
experienced user can jump to chapter The Tutorials and Tests to find more
explicit and specific information about how to build and run the examples.

$ROOTSYS/test

The test directory contains a set of examples that represent all areas of the
framework. When a new release is cut, the examples in this directory are
compiled and run to test the new release's backward compatibility.

We see these source files:

- hsimple.cxx_ - Simple test program that creates and saves some
histograms

- MainEvent.cxx - Simple test program that creates a ROOT Tree
object and fills it with some simple structures but also with complete
histograms. This program uses the files Event.cxx, EventCint.cxx
and Event . h. An example of a procedure to link this program is in
bind Event. Note that the Makefile invokes the rootcint utility to
generate the CINT interface EventCint.cxx.

- Event.cxx -Implementation for classes Event and Track

- minexam.cxx - Simple test program to test data fitting.

- tcollex.cxx - Example usage of the ROOT collection classes

- tcollbm.cxx - Benchmarks of ROOT collection classes

- tstring.cxx - Example usage of the ROOT string class

- vmatrix.cxx - Verification program for the TMatrix class

- vvector.cxx - Verification program for the Tvector class

- wvlazy.cxx - Verification program for lazy matrices.

- hworld.cxx - Small program showing basic graphics.

- guitest.cxx - Example usage of the ROOT GUI classes

- Hello.cxx - Dancing text example

- Aclock.cxx -Analog clock (ala X11 xclock)

- Tetris.cxx - The famous Tetris game (using ROOT basic graphics)

- stress.cxx_ - Important ROOT stress testing program.

Introduction

December 2001 - version 3.1d 9

The SROOTSYS/test directory is a gold mine of ROOT-wisdom nuggets,
and we encourage you to explore and exploit it. However, we recommend
that the new user read the chapters:. The chapter Tutorials and Tests, has
instructions on how to build all the programs and goes over the examples
Event and stress.

$ROOTSYS/include

The include directory contains all the header files, this is especially
important because the header files contain the class definitions.

$ROOTSYS/<library>

The directories we explored above are available when downloading the
binaries or the source. When downloading the source you also get a directory
for each library with the corresponding header and source files. Each library
directory contains an inc and src subdirectory. To see what classes are in
a library, you can check the <1ibrary>/inc directory for the list of class
definitions. For example, the physics library contains these class definitions:

> 1s -m $ROOTSYS/physics/inc
CVS, LinkDef.h, TLorentzRotation.h, TLorentzVector.h,
TRotation.h, TVector2.h, TVector3.h

10

December 2001 - version 3.1d Introduction

How to Find More Information

The ROOT web site has up to date documentation. The ROOT source code
automatically generates this documentation, so each class is explicitly
documented on its own web page, which is always up to date with the latest
official release of ROOT. The class index web pages can be found at
http://root.cern.ch/root/html/Classindex.html. Each page contains a class

description, and an explanation of each method. It shows the class it was
derived from and lets you jump to the parent class page by clicking on the
class name. If you want more detail, you can even see the source. In addition
to this, the site contains tutorials, "How To's", and a list of publications and

example applications.

7} TNamed - Microsoft Internet Explorer

| Ele Edt View Favortes Tooks Help
. O o Q G4 Bi@-é o
Back Forward! Stop Refresh Home Search Favorites History Mail Print

| Address [@] hitp. /1

j @Go

oot.cem.ch/root/html/TNamed html

public:

<«

class TNa

static TClass*
virtual Int_t

virtual const char*
virtual const char®*

TNamed

s o =

.
class description - source file - inheritance tree
=
N
A\
N
N

\\/0
N
Q/“
TNamed ()

TNamed (const char* name, conar |
TNamed {const TString& name, const
TNamed (const TNamedé& named)

med : public TObject

r* title)

;@ﬂg& tit

7 http://root
| Fie Edt

O[]
|

t Explorer

2 =2 s
Back fowad Stop Refiesh Home | Seach Favores Histoy | Mal Print
| Address [@] hitp:/ /root.cem.ch/ioot/html/TTree it T Tree:description =] @60
Class Description |
f

TTree |

/ a TTree cbject has a header with a name and a title.

/ It consists of a list of independent branches (TBranch). Each branch

/ has its own definition and list of buffers. Branch buffers may be
automatically written to disk or kept in memory until the Tree attribu
fMaxVirtualSize is reached.

Variables of one branch are written to the same buffer.

A branch buffer is automatically compressed if the file compression
attribute is set (default).

Branches may be written to different files (see TBranch::SetFile).

The ROOT user can decide to make one single branch and serialize one
object into one single I/O buffer or to make several branches.

Making one single branch and one single buffer can be the right choice
when one wants to process only a subset of all entries in the tree.
(you know for example the list of entry numbers you want to process).
Making several branches is particularly interesting in the data analys
phase, when one wants to histogram some attributes of an chject (entry
without reading all the attributes.

| o

virtual void ~TNamed ()

Class ()

Compare (TObject* obj) % /
Copy (TObjects named) /
FillBuffer (char*s buffer) /f

virtual void
virtual void

[[[intemet /
|

I
clasg description - source file - inkeritance tree

GetName () const Y
-
| ~ DN

GetTitle() const
[[inemet /N

TAttMarker

protected:

public:
TTree TTree()
TTree
7 http://r00t.cern.ch/root/html/T Tree.ht TTree TTree(TTree

~TTree ()

class TTree : public TNamed, TNamed pubhc TAttLine, public TAttFill, public

const char* GetNameByIndex (TString& var
virtual void MakeIndex (TString& varexp,

TTiee (const char?® name,\ccmsl: char* title, Int t maxvirtualsize = 0)

\

%)
Int_t* index,

IM/t* index)

Int_t colindex) const

\
\

\

Mail

Print

| Fle Edt View Favortes Tools Hel vireual void
- 5 B
Stop

Back Fomwerd : s

(| ol

[[Intemet

=] @60

| Address [&] htip://1o0t cermch/ioot/himl/TTree. hml#T Tree: TTree

_] Rﬁnri”

|

TTree::TTree (const char *name,const char *title, Int_t maxvirtualsize)

Aok F_F_F_F_f_F_*_*Normal Tree CONSTLrUCTLOr —F—F—f_f_ F_ F_#_F_F_F_F_F_%_%
£

The Tree is created in the current directory
Use the various functions Branch below to add branches to this Tree.

& 3|
TTree(const char *name,const char *title, Int t maxvirtualsize) "I'Nameal(n'e:‘me,titleS(llhllgﬁ‘I

: TNamed (name, title)

I

’//t-w-t-a-a-u-a.ﬁ.w.mom Tree CONStructor#—#—#—A—k—&——#—*—k—K—N—h—h—#

~TTree()

BB K KK F A A Tree deSLrUCTOL FmF e F e e F o F o F o F o F o FF_FoF_F_F
£

7=
1
| ## The Tree is created in the current directory
il Use the various functions Branch below to add branches to this Tree.
fScanField 25:;
fMaxEntryLoop 1000000000
fMaxVirtualSize maxvirtualsize;

fhirectory gbirectory:

fEntries 0: hud
4] | »

[[ntemet 7

00000

Done

« |

(3] [[Intemet

Introduction

December 2001 - version 3.1d 11

2 Getting Started

We begin by showing you how to use ROOT interactively. There are two
examples to click through and learn how to use the GUI. We continue by
using the command line, and explaining the coding conventions, global
variables and the environment setup.

If you have not installed ROOT, you can do so by following the instructions in
the appendix, or on the ROOT web site:
http://root.cern.ch/root/Availability.html

Start and Quit a ROOT Session

To start ROOT you can type root at the system prompt. This starts up CINT
the ROOT command line C/C++ interpreter, and it gives you the ROOT
prompt (root [01]).

o\

root
ER R i b 4

*

WELCOME to ROOT
Version 2.25/02 21 August 2000

You are welcome to visit our Web site
http://root.cern.ch

*
* *
* *
* *
* *
* *
* *
* *
* *

R R R I I I I I I b I b I b I I b I I Ih b I 2 S I e b b I b b b 4h b 2 e

CINT/ROOT C/C++ Interpreter version 5.14.47, Aug 12 2000
Type ? for help. Commands must be C++ statements.
Enclose multiple statements between { }.

root [0]

Getting Started December 2001 - version 3.1d 13

It is possible to launch ROOT with some command line options, as shown
below:

% root -/7?
Usage: root [-1] [-b] [-n] [-g] [filel.C ... fileN.C]
Options:
-b : run in batch mode without graphics
-n : do not execute logon and logoff macros as
specified in .rootrc
-gq : exit after processing command line script files
-1 do not show the image logo (splash sceen)

—b: Run in batch mode, without graphics display. This mode is useful in case
one does not want to set the DISPLAY or cannot do it for some reason.

—n: Usually, launching a ROOT session will execute a logon script and
quitting will execute a logoff script. This option prevents the execution of
these two scripts.

It is also possible to execute a script without entering a ROOT session. One
simply adds the name of the script(s) after the ROOT command. Be warned:
after finishing the execution of the script, ROOT will normally enter a new
session.

—q: exit after processing command line script files. Retrieving previous
commands and navigating on the Command Line.

For example if you would like to run a script in the background, exit after
execution, and redirect the output into a file, use the following syntax:

root -b -g myMacro.C > myMacro.log
For a quicker execution (i.e. compiled speed rather than interpreted speed),
you can build a shared library with ACLIC (see the Chapter on CINT) and
then use the shared library on the command line.

root -b -g myMacro.so > myMacro.log
ROOT's powerful C/C++ interpreter gives you access to all available ROOT
classes, global variables, and functions via a command line. By typing C++
statements at the prompt, you can create objects, call functions, execute
scripts, etc. For example:

root[] 1l+sgrt(9)

(double)4.000000000000e+00
root[]for (int i = 0; i<5; i++) cout << "Hello" << i << endl

Hello
Hello
Hello
Hello
Hello
root[]

0

DSw N

-q

14

December 2001 - version 3.1d Getting Started

Exit ROOT

To quit the command line type . q.

root[] .q

First Example: Using the GUI

In this example, we show how to use a function object, and change its
attributes using the GUI. Again, start ROOT:

Note: The GUI on MS-Windows looks and works a little different from the one
on UNIX. We are working on porting the new GUI class to Windows. Once
they are available, the GUI will be changed to be identical to the one in UNIX.
In this book, we used the UNIX GUI.

Q

% root

root[] TF1 £1("funcl", "sin(x)/x", 0, 10)
root[] f£1l.Draw()

You should see something like this:

P cl M= B3

Eile Edit Yiew Options Inspect Classes Help

sin(x)x

1

0.8

0.6

0.4

10

=
WM
B
2]
cn

Drawing a function is interesting, but it is not unique to a function. Evaluating
and calculating the derivative and integral are what one would expect from a
function. TF1, the function class defines these methods for us.

root [] £f1.Eval (3)

(Double t)4.70400026866224020e-02
root [] fl.Derivative (3)

(Double t) (-3.45675056671992330e-01)
root [] £1.Integral(0,3)

(Double t)1.84865252799946810e+00
root [] f1l.Draw()

Getting Started December 2001 - version 3.1d 15

Note that by default TF1: : Paint, the method that draws the function,
computes 100 equidistant points to draw it. You can set the number of points
to a higher value with the TF1: : SetNpx () method:

root []

fls.SetNpx(2000) ;

Classes, Methods and Constructors

Object oriented programming introduces objects, which have data members
and methods.

The line TF1 f1("funcl", "sin(x)/x", 0, 10) creates an object
named f£1 of the class TF1 that is a one-dimensional function. The type of an
object is called a class. The object is called an instance of a class. When a
method builds an object, it is called a constructor.

TF1 f1("funcl", "sin(x)/x", 0, 10)

In our constructor, we used sin (x) /x, which is the function to use, and 0
and 10 are the limits. The first parameter, func1 is the name of the object
£1. Most objects in ROOT have a name. ROOT maintains a list of objects
that can be searched to find any object by its given name (in our example
funcl).

The syntax to call an object's method, or if one prefers, to make an object do
something is:

object.method name (parameters)

This is the usual way of calling methods in C++. The dot can be replaced by
" ->"if object is a pointer. In compiled code, the dot MUST be replaced by
a"->"if object is a pointer.

object ptr->method name (parameters)

So now, we understand the two lines of code that allowed us to draw our
function. £1.Draw () stands for “call the method Draw associated with the
object £1 of class TF1”. We will see the advantages of using objects and
classes very soon.

One point, the ROOT framework is an object oriented framework; however
this does not prevent the user from calling plain functions. For example, most
simple scripts have functions callable by the user.

User interaction

If you have quit the framework, try to draw the function sin (x) /x again.
Now, we can look at some interactive capabilities. Every object in a window
(which is called a Canvas) is in fact a graphical object in the sense that you
can grab it, resize it, and change some characteristics with a mouse click.

For example, bring the cursor over the x-axis. The cursor changes to a hand
with a pointing finger when it is over the axis. Now, left click and drag the
mouse along the axis to the right. You have a very simple zoom.

When you move the mouse over any object, you can get access to selected
methods by pressing the right mouse button and obtaining a context menu. If
you try this on the function (TF1), you will get a menu showing available
methods. The other objects on this canvas are the title a TPaveText, the x
and y-axis, which are TAx1is objects, the frame a TFrame, and the canvas a

16

December 2001 - version 3.1d Getting Started

TCanvas. Try clicking on these and observe the context menu with their

methods.
Ml =1 S
Eile Edit Miew Options Inspect Classes Help
sin(x)x |
1 ‘
C TF1::funcl
r DrawPanel
038 [SetMaximum
- SethMinimum
~ Sethpx
0.5 — pEe Inge
- SetParMNames
B Sethlame
0.4 [SetTite
~ Delete
B DrawClass
0.2 [DrawClane
- Dump
= Inspect
0 SetDrawOption
- SetlineAttributes
B SetFillatiributes
-020 :
b, settarkerdftibutes |)0 1o b b b b
0 1 2 3 4 5 6 7 8 9 10

For the function, try for example to select the setRange method and put -10,
10 in the dialog box fields. This is equivalent to executing the member
function £1.SetRange (-10,10) from the command line prompt, followed
by f1.Draw ().

Here are some other options you can try. For example, select the
DrawPanel item of the popup menu.

You will see a panel like this:

[drawpanel: funcl

lego1

surt Goursud

E1: errorsiedges E2: errorsirectangles

E3: errorsill E4: errorsfconfour

Getting Started December 2001 - version 3.1d 17

Try to resize the bottom slider and click Draw. You can zoom your graph. If
you click on "lego2" and "Draw", you will see a 2D representation of your
graph:

G c1 H[=] E3
File Edit ¥iew Options Inspect Classes Help

sin(x)f«

This 2D plot can be rotated interactively. Of course, ROOT is not limited to
1D graphs - it is possible to plot real 2D functions or graphs. There are
numerous ways to change the graphical options/colors/fonts with the various
methods available in the popup menu.

Line attributes Text attributes Fill attributes
@ attline: funcl M= 3 5] atttent: itlo @ atfill: func1 M= 3
T TT NN o
WEEEETT SN (.
EEEREEE N FHHF""

NN
N

Once the picture suits your wishes, you may want to see the code you should
put in a script to obtain the same result. To do that, choose the "Save as
canvas.C" option in the "File" menu. This will generate a script showing the
various options. Notice that you can also save the picture in PostScript or
GIF format.

One other interesting possibility is to save your canvas in native ROOT
format. This will enable you to open it again and to change whatever you like,
since all the objects associated to the canvas (histograms, graphs) are saved
at the same time.

December 2001 - version 3.1d Getting Started

Second Example: Building a Multi-pad Canvas

Let’'s now try to build a canvas (i.e. a window) with several pads. The pads
are sub-windows that can contain other pads or graphical objects.

root[] TCanvas *MyC = new TCanvas ("MyC","Test canvas",1l)
root[] MyC->Divide(2,2)

Once again, we called the constructor of a class, this time the class
TCanvas. The difference with the previous constructor call is that we want to
build an object with a pointer to it.

Next, we call the method Divide of the TCanvas class (that is
TCanvas: :Divide ()), which divides the canvas into four zones and sets
up a pad in each of them.

root[] MyC->cd(1)
root[] £1->Draw()

Now, the function £1 will be drawn in the first pad. All objects will now be
drawn in that pad. To change the active pad, there are three ways:

Click on the middle button of the mouse on an object, for example a pad. This
sets this pad as the active one

Use the method TCanvas: : cd with the pad number, as was done in the
example above:

root[] MyC->cd(3)

Pads are numbered from left to right and from top to bottom.

Each new pad created by TCanvas: : Divide has a hame, which is the
name of the canvas followed by 1, 2, etc. For example to apply the method
cd () to the third pad, you would write:

root[] MyC_3->cd()

The third pad will be selected since you called TPad: : cd () for the object
MyC_ 3. ROOT automatically found the pad that was named MyC 3 when
you typed it on the command line (see ROOT/CINT Extensions to C++).

The obvious question is: what is the relation between a canvas and a pad? In
fact, a canvas is a pad that spans through an entire window. This is nothing
else than the notion of inheritance. The TPad class is the parent of the
TCanvas class.

Printing the Canvas

To print a canvas click on the File menu and select Print. This will create
a postscript file containing the canvas. The file is named
<canvasname>.ps. Then you can send the postscript file to your printer.

Getting Started December 2001 - version 3.1d 19

The ROOT Command Line

We have briefly touched on how to use the command line, and you probably
saw that there are different types of commands.

1.CINT commands start with “.”

root [].?

//this command will list all the CINT commands
root [].l1 <filename>

//load [filename]

root [].x <filename>

//load [filename] and execute function [filename]

2.SHELL commands start with “. !” for example:

root [] .! 1ls
3. C++ commands follow C++ syntax (almost)

root [] TBrowser *b = new TBrowser ()
CINT Extensions
We can see that some things are not standard C++. The CINT interpreter has
several extensions. See the section ROOT/CINT Extensions to C++ in
chapter CINT the C++ Interpreter
Helpful Hints for Command Line Typing
The interpreter knows all the classes, functions, variables, and user defined
types. This enables ROOT to help the user complete the command line. For
example we do not know yet anything about the TLine class. We can use
the Tab feature to get help. Where <TAB> means type the <TAB> key. This
lists all the classes starting with TL.

root [] 1 = new TL<TAB>

TLeaf

TLeafB

TLeafC

TLeafD

TLeafF

TLeafl

TLeafObject

TLeafsS

TLine

TLatex

TLegendEntry

TLegend

TLink

TList

TListIter

TLazyMatrix

TLazyMatrixD

This lists the different constructors and parameters for TLine.

20

December 2001 - version 3.1d Getting Started

root []
TLine TLine ()
TLine TLine (Double t x1,

1l = new TLine (<TAB>

Double t yI1,

TLine TLine (const TLine& line)

Double t x2,

Double t y2)

Multi-line Commands

You can use the command line to execute multi-line commands. To begin a
multi-line command you must type a single left curly bracket {, and to end it
you must type a single right curly bracket }.

For example:

end
end
end
end
end
end

root[] {

with
with
with
with
with
with
with

=0, J =
:1Ij:

2, 3

nt t j = 0;

j + i;

or (Int_ t i = 0; i < 3; i++)

J
out <<"i = " Kik", j = " <<j<<endl;

It is more convenient to edit scripts than the command line, and if your multi
line commands are getting unmanageable you may want to start a script
instead.

Conventions

In this paragraph, we will explain some of the conventions used in ROOT
source and examples.

Coding Conventions

From the first days of ROOT development, it was decided to use a set of
coding conventions. This allows a consistency throughout the source code.
Learning these will help you identify what type of information you are dealing
with and enable you to understand the code better and quicker. Of course,
you can use whatever convention you want but if you are going to submit
some code for inclusion into the ROOT sources you will need to use these.
These are the coding conventions:

e Classes begin with T: TTree, TBrowser
¢ Non-class types end with _t: Int t
e Data members begin with f: fTree
e Member functions begin with a capital: TLoop ()
e Constants begin with k: kInitialSize, kRed
e Global variables begin with g: gEnv
e Static data members begin with £g: fgTokenClient
e Enumeration types begin with E: EColorLevel
e Locals and parameters begin with
a lower case: nbytes
o Getters and setters begin with
Get and Set: SetLast(), GetFirst()

Getting Started

December 2001 - version 3.1d 21

Machine Independent Types

Different machines may have different lengths for the same type. The most
famous example is the int type. It may be 16 bits on some old machines
and 32 bits on some newer ones.

To ensure the size of your variables, use these pre defined types in ROOT:

e Char t Signed Character 1 byte

e Uchar t Unsigned Character 1 byte

e Short t Signed Short integer 2 bytes
e UShort t Unsigned Short integer 2 bytes
e Int t Signed integer 4 bytes

e Ulnt t Unsigned integer 4 bytes

e Long t Signed long integer 8 bytes

e Ulong t Unsigned long integer 8 bytes
e Float t Float 4 bytes

e Double t Float 8 bytes

e Bool t Boolean (O=false, 1=true)

If you do not want to save a variable on disk, you can use int or Int_t, the
result will be the same and the interpreter or the compiler will treat them in
exactly the same way.

TObject

In ROOT, almost all classes inherit from a common base class called
TObject. This kind of architecture is also used in the Java language. The
TObject class provides default behavior and protocol for all objects in the
ROOT system. The main advantage of this approach is that it enforces the
common behavior of the derived classes and consequently it ensures the
consistency of the whole system.

TObject provides protocol, i.e. (abstract) member functions, for:

e Object /O (Read (), Write())

e Error handling (Warning (), Error(), SysError(), Fatal())
e Sorting (IsSortable (), Compare(), IsEqual(), Hash())

e Inspection (Dump (), Inspect())

e Printing (Print ())

e Drawing (Draw (), Paint(), ExecuteEvent())

e Bithandling (SetBit (), TestBit())

e Memory allocation (operator new and delete, IsOnHeap())
e Access to meta information (IsA (), InheritsFrom())

e Object browsing (Browse (), IsFolder())

See "The Role of TObject" in the chapter "Adding a Class".

December 2001 - version 3.1d Getting Started

Global Variables

ROOT has a set of global variables that apply to the session. For example,
gDhirectory always holds the current directory, and gStyle holds the

“

current style. All global variables begin with “g” followed by a capital letter.

gROOT

The single instance of TROOT is accessible via the global grOOT and holds
information relative to the current session. By using the grOOT pointer you
get the access to basically every object created in a ROOT program. The
TROOT object has several lists pointing to the main ROOT objects.

The Collections of gROOT

During a ROOT session, the gROOT keeps a series of colletions to manage
objects. These can be accessed with the gROOT: : GetListOf methods.

gROOT-
gROOT-
gROOT-
gROOT-
gROOT-
gROOT-
gROOT-
gROOT-
gROOT-
gROOT-
gROOT-
gROOT-
gROOT-
gROOT-
gROOT-

>GetListOfClasses ()
>GetListOfColors ()
>GetListOfTypes ()
>GetListOfGlobals ()
>GetListOfGlobalFunctions ()
>GetListOfFiles ()
>GetListOfMappedFiles ()
>GetListOfSockets ()
>GetListOfCanvases ()
>GetListOfStyles ()
>GetListOfFunctions ()
>GetListOfSpecials ()
>GetListOfGeometries ()
>GetListOfBrowsers ()
>GetListOfMessageHandlers ()

These methods return a TSeqCollection, meaning a collection of objects,
and they can be used to do list operations such as finding an object, or
traversing the list and calling a method for each of the members. See the
TCollection class description for the full set of methods supported for a
collection.

For example, to find a canvas called c1:

root []

gROOT->GetListOfCanvases () ->FindObject ("cl1")

This returns a pointer to a TObject, and before you can use it as a canvas
you will need castittoa TCanvas*.

gFile

gFileis the pointer to the current opened file.

gDirectory

gDirectory is a pointer to the current directory. The concept and role of a
directory is explained in chapter Input/Output.

Getting Started

December 2001 - version 3.1d 23

gPad

A graphic object is always drawn on the active pad. It is convenient to access
the active pad, no matter what it is. For that we have gPad that is always
pointing to the active pad. For example, if you want to change the fill color of
the active pad to blue, but you do not know its name, you can use gPad.

root[] gPad->SetFillColor (38)
To get the list of colors, if you have an open canvas, click in the "View" menu,
selecting the "Colors" entry.
gRandom
gRandom is a pointer to the current random number generator. By default, it
points to a TRandom object. Setting the seed to 0 implies that the seed will be
generated from the time. Any other value will be used as a constant.
The following basic random distributions are provided:
Gaus (mean, sigma)
Rndm ()
Landau (mean, sigma)
Poisson (mean)
Binomial (ntot, prob)
You can customize your ROOT session by replacing the random number
generator. You can delete gRandom and recreate it with your own:
root[] delete gRandom;
root[] gRandom = new TRandom3(0); //seed=0

TRandom3 derives from TRandom and is a very fast generator with higher
periodicity.

gEnv

gEnv is the global variable (of type TEnv) with all the environment settings
for the current session. This variable is set by reading the contents of a
.rootrc file (or SROOTSYS/etc/system. rootrc) at the beginning of the
session. See "Environment Setup" below for more information.

History File

You can use the up and down arrow at the command line, to access the
previous and next command. The commands are recorded in the history file
$HOME/ .root hist. It contains the last 100 commands. It is a text file, and
you can edit and cut and paste from it.

You can specify the history file in the system. rootrc file (see below), by
setting the Rint .History option. You can also turn off the command
logging in the system. rootrc file with the option: Rint .History: -

24

December 2001 - version 3.1d Getting Started

Environment Setup

The behavior of a ROOT session can be tailored with the options in the
rootrc file. At start-up, ROOT looks for a rootrc file in the following order:

e ./.rootrc //local directory
e SHOME/.rootrc //user directory
e SROOTSYS/etc/system.rootrc //global ROOT directory

If more than one rootrc file is found in the search paths above, the options
are merged, with precedence local, user, global.

While in a session, to see current settings, you can do

root [

] gEnv->Print ()

The rootrc file typically looks like:

Unix.
Unix.

Unix.
Unix.

Rint.
Rint.
Rint.
Rint.

Rint.
Rint.

Path used by dynamic loader to find shared libraries

Path where to look for TrueType fonts

Activate memory statistics

* . Root.DynamicPath: .:~/rootlibs:$ROOTSYS/1lib
* _Root.MacroPath: .:~/rootmacros:SROOTSYS/macros

*.Root.UseTTFonts: true
* Root.TTFontPath:

Root.MemStat: 1

Load: rootalias.C
Logon: rootlogon.C
Logoff: rootlogoff.C
Canvas.MoveOpaque: false

Canvas.HighLightColor: 5

The various options are explained in SROOTSYS/etc/system.rootrc.

The . rootrc file contents are combined. For example, if the flag to use true
type fonts is set to true in one of the system. rootrc files, you have to
explicitly overwrite it and set it to false. Removing the UseTTFonts
statement in the local . rootrc file will not disable true fonts.

The Script Path

ROOT looks for scripts in the path specified in the rootrc file in the
Root.Macro.Path variable. You can expand this path to hold your own
directories.

Logon and Logoff Scripts

The rootlogon.C and rootlogoff.C files are script loaded and executed
at start-up and shutdown. The rootalias.C file is loaded but not executed.
It typically contains small utility functions. For example, the rootalias.C
script that comes with the ROOT distributions and is in the
SROOTSYS/tutorials defines the function edit (char *file). This
allows the user to call the editor from the command line. This particular

Getting Started

December 2001 - version 3.1d 25

function will start the VI editor if the environment variable EDITOR is not set.

root

[0] edit("cl.C")

For more details, see SROOTSYS/tutorials/rootalias.C.

Tracking Memory Leaks

You can track memory usage and detect leaks by monitoring the number of
objects that are created and deleted (see TObjectTable). To use this
facility, edit the file . rootrc if you have this file or
SROOTSYS/etc/system.rootrc and edit or add the two following lines:

Root.MemStat: 1
Root.ObjectStat: 1

In your code, or on the command line you can type the line:

gObjectTable->Print () ;

This line will print the list of active classes and the number of instances for
each class. By comparing consecutive print outs, you can see objects that
you forgot to delete.

Note that this method cannot show leaks coming from the allocation of non-
objects or classes unknown to ROOT.

Converting HBOOK/PAW files

ROOT has a utility called h2root that you can use to convert your
HBOOK/PAW histograms or ntuples files into ROOT files. To use this
program, you type the shell script command:

h2root <hbookfile> <rootfile>

If you do not specify the second parameter, a file name is automatically
generated for you. If hbookfile is of the form £ile.hbook, then the ROOT
file will be called file.root.

This utility converts HBOOK histograms into ROOT histograms of the class
TH1F. HBOOK profile histograms are converted into ROOT profile
histograms (see class TProfile). HBOOK row-wise and column-wise
ntuples are automatically converted to ROOT Trees (see the chapter on
Trees). Some HBOOK column-wise ntuples may not be fully converted if the
columns are an array of fixed dimension(e.g. var [6]) or if they are a multi-
dimensional array.

HBOOK integer identifiers are converted into ROOT named objects by
prefixing the integer identifier with the letter "h" if the identifier is a positive
integer and by "h_ " if it is a negative integer identifier.

In case of row-wise or column-wise ntuples, each column is converted to a
branch of a tree.

Note that h2root is able to convert HBOOK files containing several levels of
sub-directories.

Once you have converted your file, you can look at it and draw histograms or
process ntuples using the ROOT command line. An example of session is

26

December 2001 - version 3.1d Getting Started

shown below:

// this connects the file hbookconverted.root
root[] TFile f ("hbookconverted.root")

//display histogram named hl10 (was HBOOK id 10)
root[] hl0.Draw() ;

//display column "var" from ntuple h30
root[] h30.Draw("var") ;

You can also use the ROOT browser (see TBrowser) to inspect this file.

The chapter on trees explains how to read a Tree. ROOT includes a function
TTree: :MakeClass to automatically generate the code for a skeleton
analysis function (see the chapter Example Analysis).

In case one of the ntuple columns has a variable length (e.g. px (ntrack)),
h.Draw ("px") will histogram the px column for all tracks in the same

histogram. Use the script quoted above to generate the skeleton function and
createf/fill the relevant histogram yourself.

Getting Started December 2001 - version 3.1d 27

3 Histograms

This chapter covers the functionality of the histogram classes. We begin with
an overview of the histogram classes and their inheritance relationship. Then
we give instructions on the histogram features.

We have put this chapter ahead of the graphics chapter so that you can
begin working with histograms as soon as possible. Some of the examples
have graphics commands that may look unfamiliar to you. These are covered
in the chapter on Input/Output.

The Histogram Classes

ROOT supports the following histogram types:
1-D histograms:

. TH1C: are histograms with one byte per channel. Maximum bin content = 255

. TH1S: are histograms with one short per channel. Maximum bin content =
65,535

. TH1F: are histograms with one float per channel. Maximum precision 7 digits
. TH1D: are histograms with one double per channel. Maximum precision 14 digits

2-D histograms:

e TH2C: are histograms with one byte per channel. Maximum bin content = 255

e TH2S: are histograms with one short per channel. Maximum bin content = 65535
e TH2F: are histograms with one float per channel. Maximum precision 7 dig

e TH2D: are histograms with one double per channel. Maximum precision 14 digits

3-D histograms:

e TH3C: are histograms with one byte per channel. Maximum bin content = 255
e TH3S: are histograms with one short per channel. Maximum bin content = 65535
e TH3F: are histograms with one float per channel. Maximum precision 7 digits
e TH3D: are histograms with one double per channel. Maximum precision 14 digits

Profile histograms:

e TProfile: one dimensional profiles
e TProfile2D: two dimensional profiles

Profile histograms are used to display the mean value of Y and its RMS for
each bin in X. Profile histograms are in many cases an elegant replacement

Histograms

December 2001 - version 3.1d 29

of two-dimensional histograms. The inter-relation of two measured quantities

X and Y can always be visualized with a two-dimensional histogram or

scatter-plot. If Y is an unknown but single-valued approximate function of X, it

will have greater precisions in a profile histogram than in a scatter plot.

All histogram classes are derived from the base class TH1. This image shows

the class hierarchy of the histogram classes.

THA1
A
|
TH1C TH1S TH1F TH1D
i
TH3 TH2 TProfile
? ?
| | | | |
TH3C TH3S TH3F TH3D TH2C TH2S TH2F TH2D
?
TProfile2D

The TH*C classes also inherit from the array class TArraycC.
The TH*S classes also inherit from the array class TArrays.
The TH*F classes also inherit from the array class TArrayF.
The TH*D classes also inherit from the array class TarrayD.

The histogram classes have a rich set of methods. Below is a list of what one

can do with the histogram classes.

Creating Histograms

Histograms are created with constructors:

TH1F
TH2F

*hl new TH1F("h1l","hl title",100,0,4.4);
*h2 = new TH2F("h2","h2 title",40,0,4,30,-3,3);

The parameters to the TH1 constructor are: the name of the histogram, the
title, the number of bins, the x minimum, and x maximum.

Histograms may also be created by:

e Calling the Clone method of an existing histogram (see below)
e Making a projection from a 2-D or 3-D histogram (see below)

e Reading a histogram from a file

When a histogram is created, a reference to it is automatically added to the

list of in-memory objects for the current file or directory. This default behavior

30

December 2001 - version 3.1d Histograms

can be disabled for an individual histogram or for all histograms by setting a
global switch.

Here is the syntax to set the directory of a histogram:

// to set the in-memory directory for h the current histogram
h->SetDirectory (0);

// global switch to disable

TH1: :AddDirectory (kFALSE) ;

When the histogram is deleted, the reference to it is removed from the list of
objects in memory. In addition, when a file is closed, all histograms in
memory associated with this file are automatically deleted. See chapter
Input/Output.

Fixed or Variable Bin Size

All histogram types support fixed or variable bin sizes. 2-D histograms may
have fixed size bins along X and variable size bins along Y or vice-versa. The
functions to fill, manipulate, draw, or access histograms are identical in both
cases.

To create a histogram with variable bin size one can use this constructor:

TH1 (const char *name,const char *title,Int t nbins,Float t
*xbins)

The parameters to this constructor are:

e title: histogram title
e nbins: number of bins
e xbins: array of low-edges for each bin. This is an array of size nbins+1

Each histogram always contains three TAx1is objects: fXaxis, fYaxis,
and fzaxis. To access the axis parameters first get the axis from the
histogram, and then call the Tax1is access methods.

TAxis *xaxis = h->GetXaxis|();
Double t binCenter = xaxis->GetBinCenter (bin);

See class TAx1is for a description of all the access methods. The axis range
is always stored internally in double precision.

Bin numbering convention
For all histogram types: nbins, x1ow, xup

Bin# 0 contains the underflow.

Bin# 1 contains the first bin with low-edge (x1ow INCLUDED).
The second to last bin (bin# nbins) contains the upper-edge (xup
EXCLUDED).

The Last bin (bin# nbins+1) contains the overflow.

In case of 2-D or 3-D histograms, a "global bin" number is defined. For
example, assuming a 3-D histogram with binx, biny, binz, the function
returns a global/linear bin number.

Histograms

December 2001 - version 3.1d 31

Int t bin = h->GetBin(binx,biny,binz);

This global bin is useful to access the bin information independently of the
dimension.

Re-binning

At any time, a histogram can be re-binned via the TH1: :Rebin method. It
returns a new histogram with the re-binned contents. If bin errors were
stored, they are recomputed during the re-binning.

Filling Histograms

A histogram is typically filled with statements like:

hl->Fill (x);
hl->Fill(
h2->Fill(
h2->Fill (x,y,wW);
h3->Fill (x,vy,2);
h3->Fill(x,vy,2z,W);

x,w); //with weight

W
X,Y) 7

The rill method computes the bin number corresponding to the given x, y
or z argument and increments this bin by the given weight. The Fi11 method
returns the bin number for 1-D histograms or global bin number for 2-D and
3-D histograms. If TH1 : : Sumw2 has been called before filling, the sum of
squares is also stored.

One can also increment a bin number directly by calling
TH1::AddBinContent. Replace the existing content via
TH1::SetBinContent, and access the bin content of a given bin via
TH1::GetBinContent

Double t binContent = h->GetBinContent (bin);

Automatic Re-binning Option

By default, the number of bins is computed using the range of the axis. You
can change this to automatically re-bin by setting the automatic re-binning
option:

h->SetBit (TH1: :kCanRebin) ;

Once this is set, the Fi11 method will automatically extend the axis range to
accommodate the new value specified in the Fi11 argument. The method
used is to double the bin size until the new value fits in the range, merging
bins two by two.

This automatic binning options is extensively used by the TTree: : Draw
function when drawing histograms of variables in TTrees with an unknown
range. The automatic binning option is supported for 1-D, 2-D and 3-D
histograms.

During filling, some statistics parameters are incremented to compute the
mean value and root mean square with the maximum precision. In case of
histograms of type TH1C, TH1S, TH2C, TH2S, TH3C, TH3S acheckis
made that the bin contents do not exceed the maximum positive capacity

32

December 2001 - version 3.1d Histograms

(127 or 65535). Histograms of all types may have positive or/and negative bin
contents.

Random Numbers and Histograms

TH1::FillRandom can be used to randomly fill a histogram using the
contents of an existing TF1 function or another TH1 histogram (for all
dimensions). For example, the following two statements create and fill a
histogram 10000 times with a default Gaussian distribution of mean 0 and
sigma 1:

TH1F hl("hl1l","histo from a gaussian",100,-3,3);
hl.FillRandom("gaus",10000) ;

TH1: :GetRandom can be used to return a random number distributed
according the contents of a histogram.

To fill a histogram following the distribution in an existing histogram you can
use the second signature of TH1: : Fi1l1Random.

This code snipped assumes that h is an existing histogram (TH1).

root [] TH1F h2("h2","Random Histo",100,-3,3);
root [] h2->FillRandom(h,1000) ;

The distribution contained in the histogram h (TH1) is integrated over the
channel contents. It is normalized to 1. Getting one random number implies:

e Generating a random number between 0 and 1 (say r1)
e Find the bin in the normalized integral for r1
e Fill histogram channel

The second parameter (1000) indicates how many random numbers are
generated.

Adding, Dividing, and Multiplying

Many types of operations are supported on histograms or between
histograms:

Addition of a histogram to the current histogram
Additions of two histograms with coefficients and storage into the current
histogram

e Multiplications and Divisions are supported in the same way as
additions.

e The Add, Divide and Multiply functions also exist to add, divide or
multiply a histogram by a function.

If a histogram has associated error bars (TH1 : : Sumw2 has been called), the
resulting error bars are also computed assuming independent histograms. In
case of divisions, binomial errors are also supported.

Histograms December 2001 - version 3.1d 33

Projections

One can:

e Make a 1-D projection of a 2-D histogram or Profile. See functions
TH2::ProjectionX, TH2::Projection¥Y, TH2::ProfileX,
TH2::ProfileY, TProfile::ProjectionX,

TProfile2D: :ProjectionXY

e Make a 1-D, 2-D or profile out of a 3-D histogram see functions

TH3::ProjectionZ, TH3::Project3D.

One can fit these projections via: TH2: : FitSlicesX,
TH2::FitSlicesY, TH3::FitSlicesZ.

Drawing Histograms

When you call the Draw method of a histogram (TH1 : : Draw) for the first
time, it creates a THistPainter object and saves a pointer to painter as a
data member of the histogram. The THistPainter class specializes in the
drawing of histograms. It is separate from the histogram so that one can have
histograms without the graphics overhead, for example in a batch program.
The choice to give each histogram have its own painter rather than a central
singleton painter, allows two histograms to be drawn in two threads without
overwriting the painter's values.

When a displayed histogram is filled again, you do not have to call the Draw
method again. The image is refreshed the next time the pad is updated. A
pad is updated after one of these three actions:

e A carriage control on the ROOT command line
e Aclick inside the pad
e Acallto TPad: :Update

By default, a call to TH1: : Draw clears the pad of all objects before drawing
the new image of the histogram. You can use the "SAME" option to leave the
previous display in tact and superimpose the new histogram. The same
histogram can be drawn with different graphics options in different pads.

When a displayed histogram is deleted, its image is automatically removed
from the pad.

To create a copy of the histogram when drawing it, you can use
TH1::DrawClone. This will clone the histogram and allow you to change
and delete the original one without affecting the clone.

Setting the Style

Histograms use the current style gStyle, which is the global object of class
TStyle. To change the current style for histograms, the TStyle class
provides a multitude of methods ranging from setting the fill color to the axis
tick marks. Here are a few examples:

34 December 2001 - version 3.1d Histograms

void
void
void
void
void

SetHistFillColor (Color t color =1
SetHistFillStyle(Style t styl = 0)
SetHistLineColor (Color t color = 1)
SetHistLineStyle(Style t styl = 0)
SetHistLineWidth (Width t width =1

When you change the current style and would like to propagate the change to
a previously created histogram you can call TH1: : UseCurrentStyle. You
will need to call UseCurrentStyle on each histogram.

When reading many histograms from a file and you wish to update them to
the current style you can use gROOT: : ForceStyle and all histograms read
after this call will be updated to use the current style (also see the chapter
Graphics and Graphic User Interfaces).

When a histogram is automatically created as a result of a TTree: : Draw,
the style of the histogram is inherited from the tree attributes and the current
style is ignored. The tree attributes are the ones set in the current TStyle at
the time the tree was created. You can change the existing tree to use the
current style, by calling TTree: :UseCurrentStyle ().

Histograms

December 2001 - version 3.1d 35

Draw Options

The following draw options are supported on all histogram classes:

o "AXIS" Draw only the axis
"HIST™ Draw only the histogram outline (if the histogram has errors,
they are not drawn)

"SAME": Superimpose on previous picture in the same pad
"CYL" Use cylindrical coordinates

"POL"™ Use polar coordinates

"SPH" Use spherical coordinates

"PSR" Use pseudo-rapidity/phi coordinates

"LEGO": Draw a lego plot with hidden line removal

"LEGO1": Draw a lego plot with hidden surface removal

"LEGO2": Draw a lego plot using colors to show the cell contents
"SURF": Draw a surface plot with hidden line removal

"SURF1": Draw a surface plot with hidden surface removal
"SURF2": Draw a surface plot using colors to show the cell contents
"SURF3": Same as SURF with a contour view on the top

"SURF4": Draw a surface plot using Gouraud shading

The following options are supported for 1-D histogram classes:

o "AH™ Draw the histogram, but not the axis labels and tick marks
e "B" Draw a bar chart
o "C™ Draw a smooth curve through the histogram bins
o "E Draw the error bars
o "EO" Draw the error bars including bins with O contents
o "E1™ Draw the error bars with perpendicular lines at the edges
o "E2" Draw the error bars with rectangles
o "E3" Draw a fill area through the end points of the vertical error
bars
o "E4™ Draw a smoothed filled area through the end points of the
error bars
"L Draw a line through the bin contents
"P": Draw a (Poly) marker at each bin using the histogram's
current marker style
o "H™ Draw histogram with a * at each bin

The following options are supported for 2-D histogram classes:

e "ARR"™ Arrow mode. Shows gradient between adjacent cells

e "BOX": Draw a box for each cell with surface proportional to contents

e "COL™ Draw a box for each cell with a color scale varying with
contents

e "COLZ": Same as "coL" with a drawn color palette

e "CONT": Draw a contour plot (same as CONTO0)

e "CONTZ": Same as "CONT" with a drawn color palette

e "CONTO" Draw a contour plot using surface colors to distinguish
contours

e "CONT1": Draw a contour plot using line styles to distinguish contours

e "CONT2": Draw a contour plot using the same line style for all contours

e "CONT3": Draw a contour plot using fill area colors

36

December 2001 - version 3.1d Histograms

e "CONT4": Draw a contour plot using surface colors (SURF option at

theta = 0)

o "LIST™ Generate a list of TGraph objects for each contour

e "FB"™ To be used with LEGO or SURFACE, suppress the Front-
Box

e "BB"™ To be used with LEGO or SURFACE, suppress the Back-
Box

e "SCAT": Draw a scatter-plot (default)

e "TEXT": Draw cell contents as text

e "[cutg]": Draw only the sub-range selected by the TCutG name
"cutg".

o "Z" The "Z" option can be specified with the options : BOX, COL,
CONT, SURF, and LEGO to display the color palette with an
axis indicating the value of the corresponding color on the
right side of the picture.

Most options can be concatenated without spaces or commas, for example:

h->Draw ("E1SAME") ;
h->Draw ("elsame") ;

The options are not case sensitive. The options BOX, COL and COLZ, use the
color palette defined in the current style (see TStyle: :SetPalette)

The options CONT, SURF, and LEGO have by default 20 equidistant contour
levels, you can change the number of levels with TH1: : SetContour.

You can also set the default drawing option with TH1: : SetOption. To see
the current option use TH1: :GetOption.

For example:

h->SetOption ("lego") ;
h->Draw(); // will use the lego option
h->Draw ("scat") // will use the scatter plot option

Statistics Display

By default, drawing a histogram includes drawing the statistics box. To
eliminate the statistics box use: TH1: :SetStats (kFALSE) .

If the statistics box is drawn, you can select the type of information displayed
with gStyle->SetOptStat (mode) . The mode has up to seven digits that
can be set to on (1) or off (0). Mode = iourmen (default = 0001111)

the name of histogram is printed
the number of entries printed

the mean value printed

the root mean square printed

the number of underflows printed
the number of overflows printed
the integral of bins printed

JEE L L (RSIE UL L U

[]
O € 8 3 0 3

When trailing digits is left out, they are assumed 0. For example:

Histograms December 2001 - version 3.1d 37

gStyle->SetOptStat (11);

This displays only the name of histogram and the number of entries.

When the option "same" is used, the statistic box is not redrawn; and hence
the statistics from the previously drawn histogram will still show. With the
option "sames", you can rename a previous "stats" box and/or change its
position with these lines:

[]TPaveStats *st = (TPaveStats*)gPad->GetPrimitive ("stats")
[]1st->SetName (newname)
root[]st->SetX1NDC (newxl); //new x start position
[1st->SetX2NDC (newx2); //new x end position
[Inewhist->Draw ('"sames")

Setting Line, Fill, Marker, and Text Attributes

The histogram classes inherit from the attribute classes: TAttLine,
TAttFill, TAttMarker and TAttText. See the description of these
classes for the list of options.

Setting Tick Marks on the Axis

The TPad: : SetTicks method specifies the type of tick marks on the axis.
Assume tx = gPad->GetTickx () and ty = gPad->GetTicky() .

e tx =1, tick marks on top side are drawn (inside)

e tx =2;tick marks and labels on top side are drawn

e ty =1, tick marks on right side are drawn (inside)

e ty =2;tick marks and labels on right side are drawn

e By default only the left Y axis and X bottom axis are drawn (tx = ty =
0)

Use TPad: :SetTicks (tx, ty) to setthese options. See also The TAxis
methods to set specific axis attributes. In case multiple color filled histograms
are drawn on the same pad, the fill area may hide the axis tick marks. One
can force a redraw of the axis over all the histograms by calling:

gbPad->RedrawAxis () ;

Giving Titles to the X, Y and Z Axis

Because the axis title is an attribute of the axis, you have to get the axis first
and then call TAxis::SetTitle.

h->GetXaxis () ->SetTitle ("X axis title");
h->GetYaxis () ->SetTitle("Y axis title");

The histogram title and the axis titles can be any TLatex string. The titles
are part of the persistent histogram. For example if you wanted to write E with
a subscript (T) you could use this:

38

December 2001 - version 3.1d Histograms

h->GetXaxis () ->SetTitle ("E_{T}");

For a complete explanation of The Latex mathematical expressions see
chapter "Graphics and Graphical User Interface".

The SCATter Plot Option

By default, 2D histograms are drawn as scatter plots. For each cell (i,) a
number of points proportional to the cell content are drawn. A maximum of
500 points per cell are drawn. If the maximum is above 500 contents are
normalized to 500.

The ARRow Option

The ARR option shows the gradient between adjacent cells. For each cell
(i, J) an arrow is drawn. The orientation of the arrow follows the cell gradient

The BOX Option

For each cell (i,j) a box is drawn with surface proportional to contents.

The ERRor Bars Options

e 'E Default. Draw only the error bars, without markers
e 'EOQ Draw also bins with 0 contents
e 'ET Draw small lines at the end of the error bars
o 'E2 Draw error rectangles
e 'EJ Draw a fill area through the end points of the vertical error
bars
o 'E4 Draw a smoothed filled area through the end points of the
error bars.
This is the total distribution | total
Heut - 30000
F : T Mean - -0.643764
200 E RMS - 14163

350

300

250

200

150

100

50

1
I
-4 -3 -2 -1 0

Histograms December 2001 - version 3.1d 39

The COLor Option

For each cell (i,j) a box is drawn with a color proportional to the cell content.
The color table used is defined in the current style (gStyle). The color
palette in TStyle can be modified with TStyle: :SetPalette.

[xygaus + xygaus(5) + xandau(10) | [xygaus + xygaus(5) + xMlandau(10) |
SCAT I 4 BOX
& FJE - - = o= e e e e e oo
Fr = s o s mE @O E =@ =« - -
:_- s EEEBEEEES = = = -
z:--I----------..
- AN - - -
i s EEEEEEES = - - -
(= = m H = HEE = = -
n:- = m o mm - = o= = =
A 5 o o & & o o . = o o =
o oo oo oo o8 oo . . = EE =
F - = m = o= o= = = |]
-2 - mm - - . - mll=s -
o = mm EEE = - - - =N =
3 - = EEEE= = " s o= mom o= -
. F -" mmmm = - - - e e
W BT i | - oo b b b Lo b b g L
4—4 -3 -2 -1 0 1 2 4 4— -3 -2 -1 1 2 4

[orgaus + xygaus(5) + xandau(10) | |

e
Foo« 0w v 0 0 s e
3 * v v & 0L F 5 e e e a
L T T T O O .
= T T B .
B e F o 5 5 5 o6 .
1= - = = & & 1 % s onu e e e 4 = .
|t Y [N TR TR SR T S S S B ' -
L A e L T e e R B
L T
T e
A - e e e e e L
Es = = ¢ & o 8 & o o """"“I'L."l/"
T T S e
= - -~ . 0 s e e e — e — -
F- ~ ~ " % ¢ of o e s e = Y
_3_____, L . . T T T T R
L T T O T S R S B
_'|'|||||||i|||||||]|||||I|||||||]|I|||I’||
-4 -3 -2 -1 0 1 2 3

40 December 2001 - version 3.1d Histograms

The TEXT Option

For each cell (i, j) the cell content is printed. The text attributes are:

Text font
Text size

= current TStyle font

= 0.02* pad-height * marker-size
Text color = marker color

xygaus + xygaus(5) + xylandau(10) |

4 —0 22 16 20 29 i36 26 26 27 20 :21 20 13 14 :
L2221 3 43 64 62 65 74 63 43 (S 32 30 23 139 M 3 5 2
3 L2 6468 122136 124 140 442 1190+ B2 62 -5Y 3D DR i AG B G G
86 112 146 168 185 :212 210 211 213 161 (162 123 80 76 42 34 19 11 6 3
L12a 176 23 218 249 294 321 293 262 243 195 159 133 100 61 39 39 15 9 8
2 47 165 239 278 333 (370 353 374 314 307 229 168 118 106 83 (60 36 20 12 &
422 205 261 279 376 382 379 335 36 320 277 M7 457 120 19 60 33 43 A0 7
AR o E T T e (o C e
103 1390 181 231 241 1280 269 280 241 195 175 48 106 77 42 39 2 1 T &
60 88 143 143 184 153 187 162 180 136 117 88 77 45 51 23 18 1w 5 1
0 ; 48 T ;‘ 1["]1']4 11810211498 ?469 57 4,8 33 2? 13 11 9. 4 5
43 23 40 67 97 iT1 8 55 58 45 45 20 3 20 4311 16 15 5
) R S SO AP PRI TSIE P S
3 19 s 62 69 (73 60 67 47 45 .21 22 58 143 216 .210 122 3} 9 6
3 28 53 75 104 87 95 8B 47 49 .42 35 B) 209 394395 220 55 15 14
- EREEE 9 192 159 119 153 90 94 713 53 3 90 262 376 41 246 98 7 1
[44 58 146 202 248 1269 201 196 144 120 (95 75 92 161 260233 121 51 30 25
-3 44 80161297 3427333 306 261206 162714210695 40910589 T0 4T 4444
[0 64 138 203 195 214 188 148 116 W2 82 T2 T W W 4 2 23 23 14
-4_| | :f | q |1|‘| | ‘1’ | l? | -{ | :T | 1 | 1 | :f | q :f | :T | % | % | :f | | I
-4 -3 -2 -1 0 1 2 3 4

Histograms

December 2001 - version 3.1d

41

The CONTour Options

The following contour options are supported:

"CONT™":

"CONTO":
"CONT1":
"CONT2":
"CONT3":
"CONT4":

Draw a contour plot (same as CONTO)

Draw a contour plot using surface colors to distinguish contours
Draw a contour plot using line styles to distinguish contours

Draw a contour plot using the same line style for all contours

Draw a contour plot using fill area colors

Draw a contour plot using surface colors (SURF option at theta = 0)

The default number of contour levels is 20 equidistant levels and can be
changed with TH1: : SetContour.

When option "LIST" is specified together with option "CONT", the points used
to draw the contours are saved in the TGraph object and are accessible in
the following way:

TObjArray *contours =
gROOT->GetListOfSpecials () ->FindObject ("contours")

Int t ncontours = contours->GetSize();

TList *list = (TList*)contours->At (i) ;

Where "i" is a contour number and list contains a list of TGraph objects.
For one given contour, more than one disjoint poly-line may be generated.
The number of TGraphs per contour is given by 1ist->GetSize () . Here
we show how to access the first graph in the list.

TGraph *grl = (TGraph*)list->First();

[xygaus + xygaus(5) + xyi

[xvygaus + xygaus{5) + xd 10) |

CONT2 I

42

December 2001 - version 3.1d Histograms

The LEGO Options

In a lego plot, the cell contents are drawn as 3-d boxes, with the height of the
box proportional to the cell content. A lego plot can be represented in several
coordinate systems; the default system is Cartesian coordinates. Other
possible coordinate systems are CYL, POL, SPH, and PSR.

e "LEGO": Draw a lego plot with hidden line removal
e "LEGO1"™ Draw a lego plot with hidden surface removal
e "LEGO2": Draw a lego plot using colors to show the cell contents

See TStyle: :SetPalette to change the color palette. We suggest you
use palette 1 with the call

gStyle->SetColorPalette (1) ;

[xygaus + xygaus(5) + xylandau(10) |

[xygaus + xygaus(5) + xyandau(10) | | xygaus + xygaus(5) + xylandau(10) |

SURF1POL

SURF1CYL

Histograms December 2001 - version 3.1d 43

The SURFace Options

In a surface plot, cell contents are represented as a mesh. The height of the
mesh is proportional to the cell content. A surface plot can be represented in
several coordinate systems. The default is Cartesian coordinates, and the
other possible systems are CYL,, POL, SPH, and PSR.

"SURF":

"SURF1"
"SURF2"
"SURF3"
"SURF4":

Draw a surface plot with hidden line removal

Draw a surface plot with hidden surface removal

Draw a surface plot using colors to show the cell contents
Same as SURF with a contour view on the top

Draw a surface plot using Gouraud shading

The following picture uses SURF1. See TStyle: :SetPalette to change
the color palette. We suggest you use palette 1 with the call:

gStyle->SetColorPalette (1) ;

[xwgaus + xygaus(5) + xlandaui{10) |

[xwgaus + xygaus(5) + xlandaui{10) |

|||||||||I.
-]

=3
()

[7)
&

300

]
&

201

44

December 2001 - version 3.1d Histograms

The Z Option: Display the Color Palette on the

Pad

The "Z" option can be specified with the options : BOX, COL, CONT,
SURF, and LEGO to display the color palette with an axis indicating the
value of the corresponding color on the right side of the picture.

If there is not enough space on the right side, you can increase the size of
the right margin by calling TPad: : SetRightMargin.

The attributes used to display the palette axis values are taken from the Z
axis of the object. For example, you can set the labels size on the palette axis
with:

hist->GetZaxis () ->SetLabelSize ().

Setting the color palette

You can set the color palette with TStyle: :SetPalette, e.g.

gStyle->SetPalette (ncolors,colors) ;

For example, the option cOL draws a 2-D histogram with cells represented by
a box filled with a color index, which is a function of the cell content. If the cell
content is N, the color index used will be the color number in colors [N]. If
the maximum cell content is greater than ncolors, all cell contents are
scaled to ncolors.

If ncolors <= 0, a default palette (see below) of 50 colors is defined. This
palette is recommended for pads, labels.

If ncolors == 1 && colors == 0, a pretty palette with a violet to red
spectrum is created. We recommend you use this palette when drawing lego
plots, surfaces, or contours.

If ncolors > 0andcolors == 0, the default palette is used with a
maximum of ncolors.

The default palette defines:

Index 0 to 9: shades of gray
Index 10 to 19: shades of brown
Index 20 to 29: shades of blue
Index 30 to 39: shades of red
Index 40 to 49: basic colors

The color numbers specified in the palette can be viewed by selecting the
item "colors" in the "VIEW" menu of the canvas toolbar. The color's red,
green, and blue values can be changed via TColor: : SetRGB.

Histograms

December 2001 - version 3.1d 45

Drawing a Sub-range of a 2-D Histogram (the
[cutg] Option)

Using a TCutG object, it is possible to draw a sub-range of a 2-D
histogram. One must create a graphical cut (mouse or C++) and specify the
name of the cut between [] in the Draw option.

For example, with a TCutG named "cutg", one can call:

myhist->Draw ("surfl [cutgl");

See a complete example in the tutorial SROOTSYS/tutorials/fit2a.C.
This tutorial produces the following picture:

=
Nent = 100000

Mean x = -2.462
Mean y = -2.465
RMS x = 3.006
| RMSy = 3.006

i A
3087 FH e oy
i i 7 "\“;“‘\;“\\:;\‘\:\“:\‘ o
. A
2007 rg. “:::%‘\‘\“\\\\‘\‘t\\‘\-\““\
L

A

Drawing Options for 3-D Histograms

By default a 3-d scatter plot is drawn. If the "BOX" option is specified, a 3-D
box with a volume proportional to the cell content is drawn.

46 December 2001 - version 3.1d Histograms

Superimposing Histograms with Different

Scales

The following script creates two histograms; the second histogram is the bins
integral of the first one. It shows a procedure to draw the two histograms in
the same pad and it draws the scale of the second histogram using a new
vertical axis on the right side

void twoscales () {
TCanvas *cl = new TCanvas ("cl","hists with different
scales",600,400) ;

TH1F *hintl = new TH1F("hintl","hl bins integral",100,-3,3);

TGaxis *axis = new TGaxis (gPad->GetUxmax (), gPad->GetUymin (),

//create, fill and draw hl

gStyle->SetOptStat (kFALSE) ;

TH1F *hl = new TH1F("hl","my histogram",100,-3,3);
Int t i;

for (i=0;1i<10000;i++) hl->Fill (gRandom->Gaus (0,1));
hl->Draw () ;

cl->Update () ;

//create hintl filled with the bins integral of hl

Float t sum = 0;

for (i=1;i<=100;1++) {
sum += hl->GetBinContent (i) ;
hintl->SetBinContent (i, sum) ;

}

//scale hintl to the pad coordinates
Float t rightmax = 1.l*hintl->GetMaximum{() ;
Float t scale = gPad->GetUymax()/rightmax;
hintl->SetLineColor (kRed) ;
hintl->Scale(scale);

hintl->Draw ("same") ;

//draw an axis on the right side

gPad->GetUxmax (),
gPad->GetUymax (), 0, rightmax, 510, "+L") ;
axis->SetLineColor (kRed) ;
axis->SetTextColor (kRed) ;
axis->Draw () ;

my histogram |

250 — 10000
200 — — 8000

150 — 6000
100 — 4000

50 — 2000

0 ; S I T S N T S S NS S W) NI
3 2 -1 0 1 2 3

Histograms

December 2001 - version 3.1d 47

Making a Copy of an Histogram

Like for any other ROOT object derived from TObject, one can use the
Clone method. This makes an identical copy of the original histogram
including all associated errors and functions:

TH1F *hnew = (TH1F*)h->Clone();

hnew->SetName ("hnew") ;

// renaming is recommended, because otherwise you will
// have 2 histograms with the same name.

Normalizing Histograms

You can scale a histogram (TH1 *h) such that the bins integral is equal to the
normalization parameter norm with:

Double t scale = norm/h->Integral () ;
h->Scale (scale);

Saving/Reading Histograms to/from a file

The following statements create a ROOT file and store a histogram on the
file. Because TH1 derives from TNamed, the key identifier on the file is the
histogram name:

TFile f("histos.root","new");

TH1F hl ("hgaus","histo from a gaussian",100,-3,3);
hl.FillRandom("gaus",10000) ;

hl->Write () ;

To read this histogram in another ROOT session, do:

TFile f("histos.root");
TH1F *h = (TH1F*)f.Get ("hgaus");

One can save all histograms in memory to the file by:

file->Write () ;

For a more detailed explanation, see chapter Input/Output.

Miscellaneous Operations

e THI1::KolmogorovTest () : statistical test of compatibility in shape
between two histograms.

e THI1::Smooth () : smoothes the bin contents of a 1-d histogram

e THI1::Integral: returns the integral of bin contents in a given bin
range

48 December 2001 - version 3.1d Histograms

e THI1::GetMean (int axis) :returns the mean value along axis

e THI::GetRMS (int axis) :returns the Root Mean Square along axis
e HIl::GetEntries () : returnsthe number of entries

e THI::Reset () : resets the bin contents and errors of a histogram

Profile Histograms

Profile histograms are in many cases an elegant replacement of two-
dimensional histograms. The relationship of two quantities X and Y can be
visualized by a two-dimensional histogram or a scatter-plot; its representation
is not particularly satisfactory, except for sparse data. If Y is an unknown [but
single-valued] function of X, it can be displayed by a profile histogram with
much better precision than by a scatter-plot. Profile histograms display the
mean value of Y and its RMS for each bin in X.

The following shows the contents [capital letters] and the values shown in the
graphics [small letters] of the elements for bin j.

When you fill a profile histogram with TProfile.Fill[x, y]:

E[j] will contain for each bin j the sum of the y values for this bin

L[j] contains the number of entries in the bin j.

e[j] or s[j] will be the resulting error depending on the selected option
described in Build Options below.

E[j]] = sumY

L[j] = number of entries in bin J
hijl = H[]/ L[]

sfj] = sqrt[E[j]/ L[] - h{i]**2]
efil = shl/sart[L[]]

In the special case where s[j] is zero, when there is only one entry per bin,
e[j] is computed from the average of the s]j] for all bins. This approximation is
used to keep the bin during a fit operation.

The TProfile Constructor

The TProfile constructor takes up to six arguments. The first five
parameters are similar to TH1D: : TH1D.

TProfile(const char *name,const char *title,Int t
nbins,Axis_t xlow,Axis t xup,Option_ t *option)

The first five parameters are similar to TH1D: : TH1D. All values of y are
accepted at filling time. To fill a profile histogram, you must use
TProfile::Fill function.

Note that when filling the profile histogram the method TProfile::Fill
checks if the variable vy is between fymin and fYmax. If a minimum or
maximum value is set for the Y scale before filling, then all values below
ymin or above ymax will be discarded. Setting the minimum or maximum
value for the Y scale before filling has the same effect as calling the special
TProfile constructor above where ymin and ymax are specified.

Build Options

The last parameter is the build option. If a bin has N data points all with the
same value Y, which is the case when dealing with integers, the spread in Y
for that bin is zero, and the uncertainty assigned is also zero, and the bin is
ignored in making subsequent fits. If SQRT(Y) was the correct error in the

Histograms

December 2001 - version 3.1d 49

case above, then SQRT(Y)/SQRT(N) would be the correct error here. In fact,
any bin with non-zero number of entries N but with zero spread should have
an uncertainty SQRT(Y)/SQRT(N).

Now, is SQRT(Y)/SQRT(N) really the correct uncertainty? That it is only in
the case where the Y variable is some sort of counting statistics, following a
Poisson distribution. This is the default case. However, Y can be any variable
from an original NTUPLE, and does not necessarily follow a Poisson
distribution.

The computation of errors is based on the parameter option:

Y = values of data points
N = number of data points

' ' The default is blank, the Errors are:
spread/SQRT(N) for a non-zero spread
SQRT(Y)/SQRT(N) for a spread of zero and some data points

0 for no data points
's' Errors are:
spread for a non-zero spread
SQRT(Y) for a Spread of zero and some data points
0 for no data points
'i' Errors are:
spread/SQRT(N) for a non-zero spread
1/SQRT(12*N) for a Spread of zero and some data points
0 for no data points

'G' Errors are:

spread/SQRT(N) for a non-zero spread
sigma/SQRT(N) for a spread of zero and some data points
for no data points

The third case (option 'i') is used for integer Y values with the uncertainty of
+-0.5, assuming the probability that Y takes any value between Y-0.5 and
Y+0.5 is uniform (the same argument for Y uniformly distributed between Y
and Y+1). An example is an ADC measurement.

The 'G' option is useful, if all Y variables are distributed according to some
known Gaussian of standard deviation Sigma. For example when all Y's are
experimental quantities measured with the same instrument with precision
Sigma.

50

December 2001 - version 3.1d Histograms

Example of a TProfile

Here is a simple example of a profile histogram with its graphic output:

{

// Create a canvas giving the coordinates and the size
TCanvas *cl = new TCanvas
("cl","Profile example",200,10,700,500);

// Create a profile with the name, title, the number of
// bins, the low and high limit of the x-axis and the low
// and high limit of the y-axis. No option is given so
// the default is used.
hprof = new TProfile
("hprof","Profile of pz versus px",100, -
4,4,0,20);

// Fill the profile 25000 times with random numbers
Float t px, py, pPzZ;
for (Int t i=0; i<25000; i++) {

// Use the random number generator to get two
// numbers following a gaussian distribution
// with mean=0 and sigma=1
gRandom->Rannor (px, py) ;

pz = px*px + py*py;
hprof->Fill (px,pz,1);
}

hprof->Draw () ;
}

Histograms December 2001 - version 3.1d 51

Drawing a Profile without Error Bars

To draw a profile histogram and not show the error bars use the "HIST"
option in the TProfile: : Draw method. This will draw the outline of the
TProfile.

Create a Profile from a 2D Histogram

You can make a profile from a histogram using the methods
TH2::ProfileXand TH2::ProfileY.

Create a Histogram from a Profile

To create a regular histogram from a profile histogram, use the method
TProfiel::ProjectionX. This example instantiates a TH1D object by
copying the TH1D piece of a TProfile.

TH1D *sum = myProfile.ProjectionX()

You can do the same with a 2D profile with the
TProfile2D::ProjectionXY method.

Generating a Profile from a TTree

The 'prof' and 'profs' options in the TTree: : Draw method (see the
chapter on Trees) generate a profile histogram (TProfile), given a two
dimensional expression in the tree, or a TProfile2D given a three
dimensional expression.

Note that you can specify 'prof'or 'profs': 'prof'generates a
TProfile with error on the mean, 'profs'generates a TProfile with
error on the spread,

2D Profiles

The class for a 2D Profile is called TProfile2D. Itis in many cases an
elegant replacement of a three-dimensional histogram. The relationship of
three measured quantities X, Y and Z can be visualized by a three-
dimensional histogram or scatter-plot; its representation is not particularly
satisfactory, except for sparse data. If Z is an unknown (but single-valued)
function of X,Y, it can be displayed with a TProfile2D with better precision
than by a scatter-plot.

A TProfile2D displays the mean value of Z and its RMS for each cell in X,Y.
The following shows the cumulated contents (capital letters) and the values
displayed (small letters) of the elements for cell I, J.

When you fill a profile histogram with TProfile2D.Fill[x, vy, z]:
E[i,j] will contain for each bin i,j the sum of the z values for this bin
L[i,j] contains the number of entries in the bin j.
e[j] or s[j] will be the resulting error depending on the selected option
described in Build Options above.
E[i.j]
L[i.j]
h[i.j]

sum z
sum |
HI[ij 1/ L[]

sqrt{E[i,j] / L[i,j]- h(i,j]*"2]
s[i.j] / sqrt[L[i,j]]

s[i.j]
efi.j]

December 2001 - version 3.1d Histograms

In the special case where s[1i, 7] is zero, when there is only one entry per
cell, e[i, j] is computed from the average of the s[i, j] for all cells. This
approximation is used to keep the cell during a fit operation.

Example of a TProfile2D histogram

// Creating a Canvas and a TProfile2D

TCanvas *cl = new TCanvas
("cl","Profile histogram example",200,10,700,500);
hprof2d = new TProfile2D

("hprof2d","Profile of pz versus px and py"
,40,-4,4,40,-4,4,0,20);

// Filling the TProfile2D with 25000 points
Float t px, py, pz;
for (Int t i=0; i<25000; i++) {
gRandom->Rannor (px, py)
pz = px*px + py*py;
hprof2d->Fill (px,py,pz,1);
}
hprof2d->Draw () ;

[® Profile histogram example [_ O] =]

Eile Edit Miew Options |nspect Classes Help
| Profile of pz versus pxand py | hpro2d
d. T4

e sz | Nent= 25000
B e % o Mean x=0.009713
= Mean y=-0.0023
4 RMS x = 0.9384
: Fll:ﬂE v = 1.004

o

ra

-y

=

-

'
ra

'
o

=

= IIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII

Histograms December 2001 - version 3.1d 53

4 Graphs

A graph is a graphics object made of two arrays X and Y, holding the x, y
coordinates of n points. There are several graph classes, they are: TGraph,
TGraphErrors, TGraphAsymmErrors, and TMultiGraph.

TGraph

The TGraph class supports the general case with non equidistant points, and
the special case with equidistant points.

Creating Graphs

Graphs are created with the constructor. Here is an example. First we define
the arrays of coordinates and then create the graph. The coordinates can be
arrays of doubles or floats.

}

Int t n = 20;
Double t x([n],

for (Int_t i=0;i<n;i++) {
x[1] = 1*0.1;
y[i] = 10*sin(x[1]+0.2);

TGraph * grl =

yInl;

new TGraph (n, x, Vy);

An alternative constructor takes only the number of points (n). It is expected
that the coordinates will be set later.

TGraph *gr2 =

new TGraph (n);

Graph Draw Options

The various draw options for a graph are explained in
TGraph: : PaintGraph. They are:

- "L A simple poly-line between every points is drawn

- "F" Afill area is drawn

- A" Axis are drawn around the graph

- "c" A smooth curve is drawn

- A star is plotted at each point

- "P" The current marker of the graph is plotted at each point
- "B" A bar chart is drawn at each point

Graphs

December 2001 - version 3.1d 55

The options are not case sensitive and they can be concatenated in most
cases.

Let's look at some examples.

Continuous line, Axis and Stars (AC¥)

@Elaph Draw Options - (O] x|
File Edit “iew Options |nspect Classes Help
Graph |

10

[}
[TTT III|IIII|IIII|IIII|IIII|IIII|IIII|IIII|III

L1 04 0.6 0.4 1 1.2 14 1.6 1.4 a

=

Int t n = 20;
Double t x[n], y[n];

for (Int_t i1=0;i<n;i++) {
x[1] = 1%0.1;
y[i] = 10*sin(x[1]+0.2);
}

// create graph
TGraph *gr = new TGraph(n,x,Vy);

TCanvas *cl = new TCanvas ("cl","Graph Draw Options",

200, 10, 600, 400);

// draw the graph with axis,contineous line, and
// put a * at each point
gr->Draw ("AC*") ;

56

December 2001 - version 3.1d Graphs

Bar Graphs (AB)

File Edit Wiew Options Inspect Classes Help
Graph
0E
aE
af-
7E
(4=8
SE-
af-
aE.
2d
- L L L 1 1 1 1 1
a 0.2 04 06 0.8 1 1.2 1.4 1.6 1.8 Z

root
root
root

[] TGraph *grl = new TGraph(n,x,y)
[] grl->SetFillColor (40) ;
[1] grl->Draw ("AB") ;

This code will only work if n, x, and y are defined. The previous example
defines these.

You need to set the fill color, because by default the fill color is white and will
not be visible on a white canvas. You also need to give it an axis, or the bar
chart will not be displayed properly.

Filled Graphs (AF)

@Elaph Draw Options H=] 3
File Edit ¥iew Options Inspect Classes Help

Graph |

10

-
=
P
)
L
=
&=
e
[=-}
o
a
ra
-
S
-
=
-t
i
n

root
root
root

[] TGraph *gr3 = new TGraph(n,x,y)
[] gr3->SetFillColor (45) ;
[] gr3->Draw("AF")

This code will only work if n, x, and y are defined. The first example defines
these.

You need to set the fill color, because by default the fill color is white and will
not be visible on a white canvas. You also need to give it an axis, or the bar
chart will not be displayed properly.

Currently one can not specify the "CF" option.

Graphs

December 2001 - version 3.1d 57

Marker Options

@Glaph Draw Options _ 0] %]
File Edit ¥iew Options Inspect Classes Help
Graph |

10

Int t n = 20;
Double t x[n], y[n];

// build the arrays with the coordinate of points
for (Int_t i=0;i<n;i++) {

x[1] = 1i*0.1;

y[i] = 10*sin(x[1]+0.2);
}

// create graphs
TGraph *gr3 = new TGraph(n,x,y);

TCanvas *cl = new TCanvas ("cl","Graph Draw Options",
200,10, 600, 400);

// draw the graph with the axis,contineous line, and put
// a marker using the graph's marker style at each point
gr3->SetMarkerStyle (21);

cl->cd(4);

gr3->Draw ("APL") ;

// get the points in the graph and put them into an array
Double t *nx = gr3->GetX();
Double t *ny = gr3->GetY();

// create markers of different colors
for (Int t j=2;j<n-1;j++) {
TMarker *m = new TMarker (nx[]j], 0.5*ny[7j],22);
m->SetMarkerSize (2) ;
m->SetMarkerColor (31+7);
m->Draw () ;

58

December 2001 - version 3.1d Graphs

Superimposing two Graphs

To super impose two graphs you need to draw the axis only once, and leave
out the "A" in the draw options for the second graph. Here is an example:

@Two Graphs |- [O] x]
Eile Edit Wiew Options Inspect Classes Help
Graph |

=
']
£
[}
-]
=
=]

gROOT->Reset () ;
Int t n = 20;
Double t x[n], y[n], x1[n], yl[n];

// create the blue graph with a cos function
for (Int_t i=0;i<n;i++) {

x[1] = 1*0.5;
y[i] = 5*cos(x[1]4+0.2);
x1[i] = 1*0.5;
yl[i] = 5*sin(x[1i]+0.2);

}

TGraph *grl = new TGraph(n,x,vy);
TGraph *gr2 = new TGraph(n,x1,vyl);

TCanvas *cl = new TCanvas ("cl","Two Graphs" , 200,
10, 600, 400);

// draw the graph with axis,contineous line, and
// put a * at each point

grl->SetLineColor (4);

grl->Draw ("AC*");

// superimpose the second graph by leaving out
// the axis option "A"

gr2->SetLineWidth (3) ;

gr2->SetMarkerStyle (21);

gr2->SetLineColor (2);

gr2->Draw ("CP") ;

Graphs December 2001 - version 3.1d 59

TGraphErrors

A TGraphErrors is a TGraph with error bars. The various format options to
draw a TGraphErrors are the same for TGraph. In addition, it can be
drawn with the "Z" option to leave off the small lines at the end of the error

bars.
@A Simple Graph with error bars = B3 @A Simple Graph with error bars =1
File Edit View Options Inspect Classes Help File Edit ¥iew Options Inspect Classes Help

10

TCGraphErrors Example | TGraghErrors Example |

10

The constructor has four arrays as parameters. X and Y as in TGraph and X-
errors and Y-errors the size of the errors in the x and y direction.

This example is in SROOTSYS/tutorials/gerrors.C.

bars",200,10,700,500) ;

gROOT->Reset () ;

cl = new TCanvas("cl","A Simple Graph with error

cl->SetFillColor (42);
cl->SetGrid () ;
cl->GetFrame () ->SetFillColor (21);
cl->GetFrame () ->SetBorderSize (12) ;

// create the coordinate arrays

Int t n = 10;

Float t x[n] = {-.22,.05,.25,.35,.5,.61,.7,.85,.89,.95};
Float t y[n] = {1,2.9,5.6,7.4,9,9.6,8.7,6.3,4.5,1};

// create the error arrays
Float t ex[n] = {.05,.1,.07,.07,.04,.05,.06,.07,.08,.05};
Float t ey[n] = {.8,.7,.6,.5,.4,.4,.5,.6,.7,.8};

// create the TGraphErrors and draw it
gr = new TGraphErrors(n,x,y,ex,ey);
gr->SetTitle ("TGraphErrors Example");
gr->SetMarkerColor (4) ;
gr->SetMarkerStyle (21);
gr->Draw ("ALP") ;

cl->Update () ;

60

December 2001 - version 3.1d Graphs

TGraphAsymmErrors

@A Simple Graph with error bars

File Edit Wiew Options Inspect Classes

A TGraphAsymmErrors is a

| TGraphAsymmErrors Example |

10

! TGraph with asymmetric error
bars. The various format options
to draw a
TGraphAsymmErrors are as
for TGraph.

The constructor has six arrays
as parameters. Xand Y as
TGraph and low X-errors and
high X-errors, low Y-errors and
high Y-errors. The low value is
the length of the error bar to the
left and down, the high value is
the length of the error bar to the
right and up.

gROOT->Reset () ;
cl = new TCanvas

cl->SetFillColor (42);

cl->SetGrid ()

cl->GetFrame () ->SetFillColor (21);
) —>SetBorderSize (12);

cl->GetFrame (

// create the arrays for the points

Int t n = 10;

Double t x[n] = {-.22,.05,.25,.35,.5, .61,.7,.85,.89,.95};
{(1,2.9,5.6,7.4,9,9.6,8.7,6.3,4.5,1};

Double t y[n]

// create the arrays with high and low errors
.05,.1,.07,.07,.04,.05,.06,.07,.08,.05};
.8,.7,.6,.5,.4,.4,.5,.6,.7,.8};
.02,.08,.05,.05,.03,.03,.04,.05,.06,.03};
.6,.5,.4,.3,.2,.2,.3,.4,.5,.6};

Double t exl[n] =
Double t eyl[n] =
Double t exh[n] =
Double t eyh[n] =

// create TGraphAsymmErrors with the arrays

gr = new TGraphAsymmErrors (n,x,y,exl,exh,eyl,evh);
gr->SetTitle ("TGraphAsymmErrors Example");
gr->SetMarkerColor (4);

gr->SetMarkerStyle (21);

gr->Draw ("ALP") ;

("cl","A Simple Graph with error bars",
200,10,700,500) ;

Graphs

December 2001 - version 3.1d 61

TMultiGraph

A TMultiGraph is a collection of TGraph (or derived) objects. Use
TMultiGraph: :Add to add a new graph to the list. The TMultiGraph
owns the objects in the list. The drawing options are the same as for TGraph.

File Edit ¥iew Opfions Inspect Classes Help

Q | | | | | | |
-1 -02-05 0 Q02 0G4 04 0.481.5 1 2

// create the points

Int t n = 10;

Double t x[n] = {-.22,.05,.25,.35,.5,.61,.7,.85,.89,.95};
Double t y[n] {1,2.9,5.6,7.4,9,9.6,8.7,6.3,4.5,1};

Double t x2([n] = {-.12,.15,.35,.45,.6,.71,.8,.95,.99,1.05};
Double t y2([n] = {1,2.9,5.6,7.4,9,9.6,8.7,6.3,4.5,1};

// create the width of errors in x and y direction
Double t ex[n] = {.05,.1,.07,.07,.04,.05,.06,.07,.08,.05};
Double t ey[n] = {.8,.7,.6,.5,.4,.4,.5,.6,.7,.8};

// create two graphs
TGraph *grl = new TGraph(n,x2,y2);
TGraphErrors *gr2 = new TGraphErrors(n,x,y,ex,ey);

// create a multigraph and draw it
TMultiGraph *mg = new TMultiGraph();
mg->Add (grl) ;

mg->Add (gr2) ;

mg->Draw ("ALP") ;

Fitting a Graph

The rit method of the graph works the same as the TH1::Fit (see Fitting
Histograms).

62 December 2001 - version 3.1d Graphs

Setting the Graph's Axis Title

To give the axis of a graph a title you need to draw the graph first, only then
does it actually have an axis object. Once drawn, you set the title by getting
the axis and calling the TAxis: :SetTitle method, and if you want to
center it you can call the TAxis: :CenterTitle method.

Assuming that n, x, and y are defined, this code sets the titles of the x and y
axes.

root
root

root
root
root
root
root
root

<TCanvas: :MakeDefCanvas>: created default TCanvas with name cl

[] gr5 = new TGraph(n,x,y):
[] gr5->Draw()

[] gr5->Draw ("ALP")

] gr5->GetXaxis ()->SetTitle ("X-Axis")
] gr5->GetYaxis()->SetTitle("Y-Axis")
] gr5->GetXaxis () ->CenterTitle()

] gr5->GetYaxis () ->CenterTitle()

]

[
[
[
[
[] gr5->Draw("ALP")

[c1 - [O[x]
File Edit Miew Options Inspect Classes Help
Graph

10

Y - Ais
-
II|IIII|IIII|IIII|IIII|IIII|IIII|IIII|III

T N N A A
g 02 04 06 048 1
- B

M S I WA
12 14 16 18 2
is

For more graph examples see: these scripts in the SROOTSYS/tutorials
directory graph.C, gerrors.C, zdemo.C, and gerrors2.C

Zooming a Graph

To zoom a graph you can create a histogram with the desired axis range first.
Draw the empty histogram and then draw the graph using the existing axis
from the histogram.

The example below is the same graph as above with a zoom in the x and y
direction.

Graphs

December 2001 - version 3.1d 63

gROOT->Reset () ;
cl = new TCanvas("cl","A Zoomed Graph",200,10,700,500);

// create a histogram for the axis range
hpx = new TH2F
("hpx","Zoomed Graph Example",10, 0,0.5,10,1.0,8.0);
// no statistics
hpx->SetStats (KFALSE) ;
hpx->Draw () ;

// create a graph

Int t n = 10;

Double t x[n] {-.22,.05,.25,.35,.5,.61,.7,.85,.89,.95};
Double t y[n] = {1,2.9,5.6,7.4,9,9.6,8.7,6.3,4.5,1};

gr = new TGraph(n,x,vy):

gr->SetMarkerColor (4);

gr->SetMarkerStyle (20) ;

// and draw it without an axis

gr->Draw ("LP") ;

@A Zoomed Graph =]

File Edit Miew Options Inzpect Classes Help

| Zoomed Graph Cxample |
Ll

FEPEPI IEUE RSP BRI SRR ST AT BT R S
0 005 01 015 02 025 03 035 04 045 03

-1 P
IIII|II

64

December 2001 - version 3.1d Graphs

5 Fitting Histograms

To fit a histogram you can use the Fit Panel on a visible histogram using the
GUI, or you can use the TH1 : : Fit method. The Fit Panel, which is limited, is
best for prototyping. The histogram needs to be drawn in a pad before the Fit
Panel is available. The TH1: : Fit method is more powerful and used in
scripts and programs.

The Fit Panel

[T3R_fitpanel: hpx To display the Fit Panel right click on a histogram
to bring up the context menu, then select the menu

m m m m m option: FitPanel.
The first sets of buttons are the predefined
ol7 ola
m m m functions of ROOT that can be used to fit the
m m m histograr_n. You have a choice of several
polynomials, a gaussian, a landau, and an
Ii Ii Ii exponential function. You can also define a
function and call it "user". It will be linked to the
W: Set all weights to 1 user button on this panel.
: You have the option to specify Quiet or Verbose.
This is the amount of feedback printed on the root
command line on the result of the fit.

When a fit is executed the image of the function is
drawn on the current pad. By default the image of
the histogram is replaced with the image of the
function. Select Same Picture to see the function
drawn and the histogram on the same picture.

Select W: Set all weights to 1, to set all errors to 1.

Select E: Compute best errors to use the Minos
technique to compute best errors.

When fitting a histogram, the function is attached
to the histogram's list of functions. By default the
previously fitted function is deleted and replaced with the most recent one, so
the list only contains one function. You can select + : Add to list of functions
to add the newly fitted function to the existing list of functions for the
histogram. Note that the fitted functions are saved with the histogram when it
is written to a ROOT file.

By default, the function is drawn on the pad displaying the histogram. Select
N: Do not store/draw function to avoid adding the function to the histogram
and to avoid drawing it.

Select 0: Do not draw function to avoid drawing the result of the fit.

Fitting Histograms December 2001 - version 3.1d 65

Select L: Log Likelihood to use loglikelihood method (default is chisquare
method).

The slider at the bottom of the panel allows you to set a range for the fit. Drag
the edges of the slider towards the center to narrow the range. Draw the
entire range to change the beginning and end.

To returns to the original setting, you need press Defaults.

To apply the fit, press the Fit button.

The Fit Method

To fit a histogram programmatically, you can use the TH1: : Fit method.
Here is the signature of TH1: : Fit and an explanation of the parameters:

void Fit (const char *fname , Option_t *option , Option t
*goption, Axis t xxmin, Axis t xxmax)

* fname : The name of the fitted function (the model) is passed as the first
parameter. This name may be one of the of ROOT's pre-defined function
names or a user-defined function.

The following functions are predefined, and can be used with the TH1::Fit
method.

e gaus: A gaussian function with 3 parameters:
f(x) = pO*exp(-0.5* ((x-pl)/p2)"2))
e expo: An exponential with 2 parameters:
f(x) = exp(p0+tpl*x).
e polN: A polynomial of degree N:
f(x) = p0 + p1*x + p2*x*2 +...
e landau: A landau function with mean and sigma. This function has
been adapted from the CERNLIB routine G110 denlan.

*option: The second parameter is the fitting option. Here is the list of fitting
options:

- "W Set all errors to 1

- Use integral of function in bin instead of value at bin center
- "L Use loglikelihood method (default is chisquare method)

- "t Use a user specified fitting algorithm

- "Q" Quiet mode (minimum printing)

A Verbose mode (default is between Q and V)

- "E" Perform better errors estimation using Minos technique

- "M" Improve fit results

- "R" Use the range specified in the function range

- "N" Do not store the graphics function, do not draw

- "o" Do not plot the result of the fit. By default the fitted function is

drawn unless the option "N" above is specified.

- "+ Add this new fitted function to the list of fitted functions (by default,
the previous function is deleted and only the last one is kept)

- "B" Disable the automatic computation of the initial parameter values
for the standard functions like poln, expo, and gaus.

*goption: The third parameter is the graphics option (goption), itis the
same as in the TH1 : : Draw (see Draw Options above) .

66

December 2001 - version 3.1d Fitting Histograms

xxmin, xxmax: The fourth and fifth parameters specify the range over
which to apply the fit

By default, the fitting function object is added to the histogram and is drawn in
the current pad.

Fit with a Predefined Function

To fit a histogram with a predefined function, simply pass the name of the
function in the first parameter of TH1: : Fit. For example, this line fits
histogram object hi st with a gaussian.

root[] hist.Fit("gaus") ;

For pre-defined functions, there is no need to set initial values for the
parameters, it is done automatically.

Fit with a User- Defined Function

You can create a TF1 object and use it in the call the TH1: :Fit. The
parameter in to the Fit method is the NAME of the TF1 object.

There are three ways to create a TF1.

1. Using C++ like expression using x with a fixed set of operators and
functions defined in TFormula.

2. Same as #1, with parameters

Using a function that you have defined

Creating a TF1 with a Formula

Let's look at the first case. Here we call the TF1 constructor by giving it the
formula: sin (x) /x.

root[] TF1 *fl = new TF1l("£f1", "sin(x)/x", 0,10)

You can also use a TF1 object in the constructor of another TF1.

root[] TF1 *f2 = new TF1("£2", "f1 * 2", 0,10)

Creating a TF1 with Parameters

The second way to construct a TF1 is to add parameters to the expression.
For example, this TF1 has 2 parameters:

root[] TFl1l *fl = new TF1("£f1","[0]*x*sin([1]*x)",-3,3);

The parameter index is enclosed in square brackets. To set the initial
parameters explicitly you can use the SetParameter method.

root[] fl->SetParameter (0,10);

This sets parameter 0 to 10. You can also use SetParameters to set
multiple parameters at once.

Fitting Histograms December 2001 - version 3.1d 67

root[] fl->SetParameters(10,5);

This sets parameter 0 to 10 and parameter 1 to 5.

We can now draw the TF1:

root[] £1->Draw()

=] =
Eile Edit ¥iew Qptions Inspect Classes Help

o1 sin{[1T%] |

S0

Creating a TF1 with a User Function

The third way to build a TF1 is to define a function yourself and then give its
name to the constructor. A function for a TF1 constructor needs to have this
exact signature:

Double t fitf (Double t *x, Double t *par)

The two parameters are:

e Double t *x:a pointer to the dimension array. Each element contains
a dimension. For a 1D histogram only x[0] is used, for a 2D histogram
x[0] and x[1] is used, and for a 3D histogram x[0], x[1], and x[2] are
used. For histograms, only 3 dimensions apply, but this method is also
used to fit other objects, for example an ntuple could have 10
dimensions.

e Double t *par: a pointer to the parameters array. This array contains
the current values of parameters when it is called by the fitting function.

The following script SROOTSYS/tutorials/myfit.C illustrates how to fit a
1D histogram with a user-defined function. First we declare the function.

// define a function with 3 parameters
Double t fitf(Double_t *x, Double_t *par)
{
Double t arg = 0
if (par[2]) arg
Double t fitval
return fitwval;

(x[0] - par[l])/par(2];
par[0]*TMath: :Exp (-0.5%arg*arqg) ;

I~

68 December 2001 - version 3.1d Fitting Histograms

Now we use the function:

// this function used fitf to fit a histogram
void fitexample ()
{

// open a file and get a histogram

TFile *f = new TFile("hsimple.root");

TF1 *hpx = (TF1*)f->Get ("hpx");

// create a TF1 object using the function defined above.
// The last 3 specifies the number of parameters

// for the function.

TF1l *func = new TF1 "fit",fitf,-3,3,3);

// set the parameters to the mean and RMS of the histogram
func->SetParameters (500, hpx->GetMean () , hpx->GetRMS ()) ;

// give the parameters meaningful names

func->SetParNames ("Constant","Mean value","Sigma");

// call TH1::Fit with the name of the TF1l object
hpx->Fit ("fit");

Fixing and Setting Bounds for Parameters

Parameters must be initialized before invoking the Fit method. The setting
of the parameter initial values is automatic for the predefined functions:
poln, exp, gaus. You can disable the automatic computation by
specifying the "B" option when calling the Fit method.

When a functions is not predefined, the fit paramters must be initialized to
some value as close as possible to the expected values before calling the fit
function.

To set bounds for one parameter, use TF1::SetParLimits:

func->SetParLimits (0, -1, 1);

When the lower and upper limits are equal, the parameter is fixed. This
statement fixes parameter 4 at 10.

func->SetParameter (4,10)
func->SetParLimits (4,77,77);

However, to fix a parameter to 0, one must call the FixParameter function:

func->SetParameter (4, 0)
func->FixParameter (4,0) ;

Note that you are not forced to fix the limits for all parameters. For example, if
you fit a function with 6 parameters, you can:

func->SetParameters(0,3.1,1.e-6,-1.5,0,100) ;
func->SetParLimits (3,-10,-4);
func->FixParameter (4,0);

With this setup, parameters 0->2 can vary freely, parameter 3 has boundaries
[-10,-4] with initial value —8, and parameter 4 is fixed to 0.

Fitting Histograms December 2001 - version 3.1d 69

Fitting Sub Ranges

By default,TH1 : : Fit will fit the function on the defined histogram range. You
can specify the option "R" in the second parameter of TH1: : Fit to restrict
the fit to the range specified in the TF1 constructor. In this example, the fit will
be limited to —3 to 3, the range specified in the TF1 constructor.

root[] TFl *fl = new TF1("£f1","[0]*x*sin([1]*x)",-3,3);
root[] hist->Fit("£f1", "R");

You can also specify a range in the call to TH1: : Fit:

root[] hist->Fit("f1","","",-2,2)

For more complete examples, see SROOTSYS/tutorials/myfit.C and
SROOTSYS/tutorials/multifit.C.

Example: Fitting Multiple Sub Ranges
: The script for this example is in
SROOTSYS/tutorials/multifit.cC.

File Edit View Options Inspect Classes Help | 1t shows how to use several gaussian
S e e =N functions with different parameters on
c separate sub ranges of the same
histogram.

To use a gaussian, or any other ROOT
built in function, on a sub range you
need to define a new TF1. Each is
'derived' from the canned function gaus.

1
uBE B0 BE 100 108 110 116 120 128 120

// Create 4 TF1l objects, one for each subrange

gl = new TF1("ml","gaus",85,95);

g2 = new TF1("m2","gaus",98,108);

g3 = new TF1("m3","gaus",110,121);

// The total is the sum of the three, each has three
//parameters.

total = new TF1l("mstotal","gaus (0)+gaus(3)+gaus(6)",85,125);

Here we fill a histogram with bins defined in the array x (see
SROOTSYS/tutorials/multifit.C).

// Create a histogram and set it's contents
h = new TH1F("gl",
"Example of several fits in subranges",np,85,134);
h->SetMaximum(7) ;
for (int i=0;i<np;i++) {
h->SetBinContent (i+1,x[1]);
}
// Define the parameter array for the total function
Double t par[9];

When fitting simple functions, such as a gaussian, the initial values of the
parameters are automatically computed by ROOT. In the more complicated
case of the sum of 3 gaussian functions, the initial values of parameters must

70 December 2001 - version 3.1d Fitting Histograms

be set. In this particular case, the initial values are taken from the result of the
individual fits.

The use of the "+" sign is explained below.

//fit each function and add it to the list of functions
h->Fit (gl,"R");

h->Fit (g2, "R+");

h->Fit (g3, "R+");

// Get the parameters from the fit
gl->GetParameters (&par[0]) ;
g2->GetParameters (&par[3]) ;
g3->GetParameters (&par[6]) ;

// Use the parameters on the sum
total->SetParameters (par) ;

h->Fit (total, "R+");

Adding Functions to The List

The example $ROOTSYS/tutorials/multifit.C also illustrates how to
fit several functions on the same histogram. By default a Fit command
deletes the previously fitted function in the histogram object. You can specify
the option "+" in the second parameter to add the newly fitted function to the
existing list of functions for the histogram.

root[] hist->Fit("£f1","+","",-2,2)

Note that the fitted function(s) are saved with the histogram when it is written
to a ROOT file.

Combining Functions

You can combine functions to fit a histogram with their sum. Here is an
example, the code is in SROOTSYS/tutorials/FitDemo.C. We have a
function that is the combination of a background and lorenzian peak. Each
function contributes 3 parameters.

y(E)=aq+asE +a3E2 + Ap (G/2p)/((E-m)? +(G/2)2)

background lorenzianPeak
par[0] = a4 par[0] = Ap
par[1] = a3 par[1] =G
par[2] = a3 par[2] = m

The combination function (fitFunction) has six parameters:

fitFunction = background (x, par) + lorenzianPeak (x, &par[3])

par[0] = a4
par[1] = az
par[2] = a3
par[3] = A,
par[4] = G
par[5] = m

Fitting Histograms December 2001 - version 3.1d 71

This script creates a histogram and fits the combination of the two functions.

First we define the two functions and the combination function:

// Quadratic background function

Double t background(Double t *x, Double t *par) {
return par[0] + par[l]1*x[0] + par[2]1*x[0]*x[0];

}

// Lorenzian Peak function
Double t lorentzianPeak (Double t *x, Double t *par) {
return (0.5*par[0]*par[l]/TMath::Pi()) /
TMath::Max(1.e-10,
(x[0]-par(2])*(x[0]-parl2]) +
.25%par([l]*par[l]
)
}

// Sum of background and peak function
Double t fitFunction (Double t *x, Double t *par) {
return background(x,par) + lorentzianPeak(x,&par([3]);

}

// .. continued on the next page void FittingDemo () {
// Bevington Exercise by Peter Malzacher,
// modified by Rene Brun

const int nBins = 60;

Stat_t data([nBins] = { 6, 1,10,12, 6,13,23,22,15,21,
23,26,36,25,27,35,40,44,66,81,
75,57,48,45,46,41,35,36,53,32,
40,37,38,31,36,44,42,37,32,32,
43,44,35,33,33,39,29,41,32,44,
26,39,29,35,32,21,21,15,25,15};

THI1F *histo = new THIF ("example 9 1",

"Lorentzian Peak on Quadratic Background",60,0,3);

for (int i=0; i < nBins; 1i++) {
// we use these methods to explicitly set the content
// and error instead of using the fill method.
histo->SetBinContent (i+1,datali]);
histo->SetBinError (i+l, TMath::Sqrt (data[i]));

}

// create a TF1l with the range from 0 to 3
// and 6 parameters
TF1l *fitFcn = new TF1 ("fitFcn", fitFunction,0,3,6);

// first try without starting values for the parameters
// This defaults to 1 for each param.

histo->Fit ("fitFecn");

// this results in an ok fit for the polynomial function
// however the non-linear part (lorenzian) does not

// respond well.

// second try: set start values for some parameters
fitFcn->SetParameter (4,0.2); // width
fitFcn->SetParameter (5,1) ; // peak

histo->Fit ("fitFcn","V+");

//.. continued on next page

72

December 2001 - version 3.1d Fitting Histograms

1/}/ improve the picture:
1 *pbackFcn = new TF1 ("backFcn",background,0,3,3);

backFcn->SetLineColor (3);

TF1l *signalFcn = new TFl("signalFcn",lorentzianPeak,0,3,3);
signalFcn->SetLineColor (4) ;

Double t par[6];

// writes the fit results into the par array
fitFcn->GetParameters (par) ;

backFcn->SetParameters (par) ;
backFcn->Draw ("same") ;

signalFcn->SetParameters (&par([3]);
signalFcn->Draw ("same") ;

This is the result:
5] c1 = E3
Eile Edit ¥iew Options |nspect Classes Help

|Lorentzian Peak on Quadratic Backgroud exampie_0_1
Hent=10

Mean = 1.56
RMS = 0.7277

90

80

70

60

50

40

3o

20

10

+H|IIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII|II

For another example see:
http://root.cern.ch/root/html/examples/backsig.C.html

Associated Function

One or more objects (typically a TF1*) can be added to the list of functions
(fFunctions) associated to each histogram. A call to TH1: : Fit adds the
fitted function to this list. Given a histogram h, one can retrieve the
associated function with:

TF1 *myfunc = h->GetFunction ("myfunc");

Fitting Histograms December 2001 - version 3.1d 73

Access to the Fit Parameters and Results

If the histogram (or graph) is made persistent, the list of associated functions
is also persistent. Retrieve a pointer to the function with the
TH1::GetFunction () method. Then you can retrieve the fit parameters
from the function (TF1) with calls such as:

root[] TF1l *fit = hist->GetFunction(function_name) ;
root[] Double_t chi2 = fit->GetChisquare();
// value of the first parameter
root[] Double t pl = fit->GetParameter(0);
// errro of the first parameter
root[] Double t el = fit->GetParError(0);

Associated Errors

By default, for each bin, the sum of weights is computed at fill time. One can
also call TH1 : : Sumw?2 to force the storage and computation of the sum of the
square of weights per bin. If Sumw2 has been called, the error per bin is
computed as the sqrt (sum of squares of weights), otherwise the
error is set equal to the sqrt (bin content). To return the error for a
given bin number, do:

Double t error = h->GetBinError (bin);

Fit Statistics

You can change the statistics box to display the fit parameters with the
TH1::SetOptFit (mode) method. This mode has four digits.

Mode = pcev (default=0111)

e v = 1 print name/values of parameters

e ¢ 1 print errors (if e=1, v must be 1)

e C 1 print Chi-square/number of degrees of freedom
e p = 1 print probability

For example:

gStyle->SetOptFit (1011);

This prints the fit probability, parameter names/values, and errors.

74 December 2001 - version 3.1d Fitting Histograms

6 A Little C++

This chapter introduces you to some useful insights into C++, to allow you to
use of the most advanced features in ROOT. It is in no case a full course in
C++,

Classes, Methods and Constructors

C++ extends C with the notion of class. If you're used to structures in C, a
class is a struct, that is a group of related variables, which is extended with
functions and routines specific to this structure (class). What is the interest?
Consider a struct that is defined this way:

struct Line {
float x1;
float yl;
float x2;
float y2;

This structure represents a line to be drawn in a graphical window. (x1, y1)
are the coordinates of the first point, (x2, y2) the coordinates of the second
point.

In standard C, if you want to effectively draw such a line, you first have to
define a structure and initialize the points (you can try this):

Line firstline;

firstline.x1 = 0.2;
firstline.yl = 0.2;
firstline.x2 = 0.8;
firstline.y2 = 0.9;

This defines a line going from the point (0.2,0.2) to the point (0.8,0.9). To
draw this line, you will have to write a function, say LineDraw (Line 1) and
call it with your object as argument:

LineDraw (firstline);

A Little C++ December 2001 - version 3.1d 75

In C++, we would not do that. We would instead define a class like this:

class

TLine (int x1, int y1, int x2, int y2);

}

TLine {

Double t x1;
Double t yl;
Double t x2;
Double t y2;

void Draw () ;

Here we added two functions, that we will call methods or member functions,
to the TLine class. The first method is used for initializing the line objects we
would build. It is called a constructor.

The second one is the Draw method itself. Therefore, to build and draw a
line, we have to do:

TLine

1.Draw () ;

1(0.2,0.2,0.8,0.9);

The first line builds the object 1 by calling its constructor. The second line
calls the TLine: : Draw () method of this object. You don’t need to pass any
parameters to this method since it applies to the object 1, which knows the
coordinates of the line. These are internal variables x1, y1, x2, y2 that
were initialized by the constructor.

Inheritance and Data Encapsulation

Inheritance

We've defined a TLine class that contains everything necessary to draw a
line. If we want to draw an arrow, is it so different from drawing a line? We
just have to draw a triangle at one end. It would be very inefficient to define
the class TArrow from scratch. Fortunately, inheritance allows a class to be
defined from an existing class. We would write something like:

class

TArrow : public TLine {

int ArrowHeadSize;

void Draw () ;

volid SetArrowSize (int arrowsize);

The keyword "public" will be explained later. The class TArrow now
contains everything that the class TLine does, and a couple of things more,
the size of the arrowhead and a function that can change it. The Draw
method of TArrow will draw the head and call the draw method of TLine.
We just have to write the code for drawing the head!

Method Overriding

Giving the same name to a method (remember: method = member function of
a class) in the child class (TArrow) as in the parent (TLine) doesn't give any

76

December 2001 - version 3.1d A Little C++

problem. This is called overriding a method. Draw in TArrow overrides
Draw in TLine. There is no possible ambiguity since, when one calls the
Draw () method; this applies to an object which type is known. Suppose we
have an object 1 of type TLine and an object a of type TArrow. When you
want to draw the line, you do:

1.Draw ()

Draw () from TLine is called. If you do:

a.Draw ()

Draw () from TArrow is called and the arrow a is drawn.

Data Encapsulation

We have seen previously the keyword "public". This keyword means that
every name declared public is seen by the outside world. This is opposed to
"orivate" which means only the class where the name was declared private
could see this name. For example, suppose we declare in TArrow the
variable ArrowHeadSize private.

private

int ArrowHeadSize;

Then, only the methods (=member functions) of TArrow will be able to
access this variable. Nobody else will see it. Even the classes that we could
derive from TArrow will not see it. On the other hand, if we declare the
method Draw () as public, everybody will be able to see it and use it. You
see that the character public or private doesn't depend of the type of
argument. It can be a data member, a member function, or even a class.

For example, in the case of TArrow, the base class TLine is declared as
public:

class

TArrow : public TLine {

This means that all methods of TArrow will be able to access all methods of
TLine, but this will be also true for anybody in the outside world. Of course,
this is true provided that TLine accepts the outside world to see its
methods/data members. If something is declared private in TLine, nobody
will see it, not even TArrow members, even if TLine is declared as a public
base class.

What if TLine is declared "private" instead of "public"? Well, it will
behave as any other name declared private in TArrow: only the data
members and methods of TArrow will be able to access TLine, it's methods
and data members, nobody else.

This may seem a little bit confusing and readers should read a good C++
book if they want more details. Especially since, besides public and private, a
member can be protected.

Usually, one puts private the methods that the class uses internally, like
some utilities classes, and that the programmer doesn’t want to be seen in
the outside world.

With "good" C++ practice (which we have tried to use in ROOT), all data
members of a class are private. This is called data encapsulation and is one

A Little C++

December 2001 - version 3.1d 77

of the strongest advantages of Object Oriented Programming (OOP). Private
data members of a class are not visible, except to the class itself. So, from
the outside world, if one wants to access those data members, one should
use so called "getters" and "setters" methods, which are special methods
used only to get or set the data members. The advantage is that if the
programmers want to modify the inner workings of their classes, they can do
so without changing what the user sees. The user doesn’t even have to know
that something has changed (for the better, hopefully).

For example, in our TArrow class, we would have set the data member
ArrowHeadSize private. The setter method is SetArrowSize (), we don’t
need a getter method:

class TArrow : public TLine {
private:
int ArrowHeadSize;

public:
void Draw () ;
volid SetArrowSize (int arrowsize);

To define an arrow object you call the constructor. This will also call the
constructor of TLine, which is the parent class of TArrow, automatically.
Then we can call any of the line or arrow public methods such as
SetArrowSize and Draw.

root[] TArrow* myarrow = new TArrow(1l,5,89,124);
root[] myarrow->SetArrowSize (10) ;
root[] myarrow->Draw() ;

Creating Objects on the Stack and Heap

To explain how objects are created on the stack and on the heap we will use
the Quad class. You can find the definition in
SROOTSYS/tutorials/Quad.h and Quad.cxx.

The Quad class has four methods. The constructor and destructor,
Evaluate which evaluates ax**2 + bx +c , and Solwve which solves
the quadratic equation ax**2 + bx +c = 0.

Quad.h:

class Quad {

public:

Quad(Float t a, Float t b, Float t c);
~Quad() ;

Float t Evaluate (Float t x) const;
void Solve () const;

private:

Float t fA;
Float t fB;
Float t fC;

78 December 2001 - version 3.1d A Little C++

Quad.cxx:

#include <iostream.h>
#include <math.h>
#include "Quad.h"

Quad: :Quad(Float_t a, Float_t b, Float_t c) {

fA = a;
fB = b;
fC = c;

}

Quad: :~Quad () {
cout << "deleting object with coeffts: "
<< fA << "," << fB << "," << fC << endl;
}

Float_t Quad::Evaluate(Float_t x) const {
return fA*x*x + fB*x + fC;
}

void Quad: :Solve () const {
Float t temp = fB*fB - 4.*fA*fC;
if (temp > 0.) {
temp = sqrt(temp);
cout << "There are two roots: "

<< (-fB - temp) / (2.*fRh)
<< " and "
<< (-fB + temp) / (2.*fA)
<< endl;
} else {
if (temp == 0.) {

cout << "There are two equal roots: "
<< -fB / (2.*fA) << endl;
} else {
cout << "There are no roots" << endl;

}

Let's first look how we create an object. When we create an object by

root[] Quad my object(l.,2.,-3.);

We are creating an object on the stack. A FORTRAN programmer may be
familiar with the idea; it's not unlike a local variable in a function or
subroutine. Although there are still a few old timers who don't know i,
FORTRAN is under no obligation to save local variables once the function or
subroutine returns unless the SAVE statement is used. If not then it is likely
that FORTRAN will place them on the stack and they will "pop off" when the
RETURN statement is reached.

To give an object more permanence it has to be placed on the heap.

root[] .L Quad.cxx
root[] Quad* my objptr = new Quad(l., 2., -3.);

The second line declares a pointer to Quad called my objptr. From the
syntax point of view, this is just like all the other declarations we have seen

A Little C++ December 2001 - version 3.1d 79

so far, i.e. this is a stack variable. The value of the pointer is set equal to new
Quad(l., 2., -3.);

new, despite its looks, is an operator and creates an object or variable of the
type that comes next, Quad in this case, on the heap. Just as with stack
objects it has to be initialized by calling its constructor. The syntax requires
that the argument list follow the type. This one statement has brought two
items into existence, one on the heap and one on the stack. The heap object
will live until the delete operator is applied to it.

There is no FORTRAN parallel to a heap object; variables either come and
go as control passes in and out of a function or subroutine, or, like a
COMMON block variables, live for the lifetime of the program. However, most
people in HEP who use FORTRAN will have experience of a memory
manager and the act of creating a bank is a good equivalent of a heap object.
For those who know systems like ZEBRA, it will come as a relief to learn that
objects don't move, C++ does not garbage collect, so there is never a danger
that a pointer to an object becomes invalid for that reason. However, having
created an object, it is the user's responsibility to ensure that it is deleted
when no longer needed, or to pass that responsibility onto to some other
object. Failing to do that will result in a memory leak, one of the most
common and most hard-to-find C++ bugs.

To send a message to an object via a pointer to it, you need to use the "->"
operator e.g.:

root[] my objptr->Solve();

Although we chose to call our pointer my objptr, to emphasize thatitis a
pointer, heap objects are so common in an OO program that pointer names
rarely reflect the fact - you have to be careful that you know if you are dealing
with an object or its pointer! Fortunately, the compiler won't tolerate an
attempt to do something like:

root[] my objptr.Solve();

Although this is a permitted by the CINT shortcuts, it is one that you are
strongly advised not to follow!

As we have seen, heap objects have to be accessed via pointers, whereas
stack objects can be accessed directly. They can also be accessed via
pointers:

root[] Quad stack_quad(1l.,2.,-3.);
root[] Quad* stack ptr = &stack quad;
root[] stack_ptr->Solve();

Here we have a Quad pointer that has been initialized with the address of a
stack object. Be very careful if you take the address of stack objects. As we
shall see soon, they get deleted automatically, which could leave you with an
illegal pointer. Using it will corrupt and may well crash the program!

It is time to look at the destruction of objects. Just as its constructor is called
when it is created, so its destructor is called when it is destroyed. The
compiler will provide a destructor that does nothing if none is provided. We
will add one to our Quad class so that we can see when it gets called.

The destructor is named by the class but with the prefix ~ which is the C++
one's complement i.e. bit wise complement, and hence has destruction
overtones! We declare it in the .h file and define it in the . cxx file. It does not
do much except print out that it has been called (still a useful debug
technique despite today's powerful debuggers!). Now run root, load the Quad

80

December 2001 - version 3.1d A Little C++

class and create a heap object:

root[] .L Quad.cxx
root[] Quad* my objptr = new Quad(l., 2., -3.);

To delete the object:

root[] delete my objptr;
root[] my_objptr = 0;

You should see the print out from its destructor. Setting the pointer to zero
afterwards isn't strictly necessary (and CINT does it automatically), but the
object is no more, and any attempt to use the pointer again will, as has
already been stated, cause grief.

So much for heap objects, but how do stack objects get deleted? In C++ a
stack object is deleted as soon as control leaves the innermost compound
statement that encloses it. So it is singularly futile to do something like:

root[]

{ Quad my object(l.,2.,-3.); }

CINT does not follow this rule; if you type in the above line you will not see
the destructor message. As explained in the Script lesson, you can load in
compound statements, which would be a bit pointless if everything
disappeared as soon as it was loaded! Instead, to reset the stack you have to

type:

root []

gROOT->Reset() ;

This sends the Reset message via the global pointer to the ROOT object,
which, amongst its many roles, acts as a resource manager. Start ROOT
again and type in the following:

root
root
root
root

[]
[]
[]
[]

.L Quad.cxx

Quad my object(l.,2.,-3.);

Quad* my objptr = new Quad(4., 5., -6.);
gROOT->Reset() ;

You will see that this deletes the first object but not the second. We have also
painted ourselves into a corner, as my objptr was also on the stack. This
command will fail.

root [

] my_objptr->Solve() ;

CINT no longer knows what my objptr is. This is a great example of a
memory leak; the heap object exists but we have lost our way to access it. In
general, this is not a problem. If any object will outlive the compound
statement in which it was created then it will be pointed to by a more
permanent pointer, which frequently is part of another heap object. See
Resetting the Interpreter Environment in the chapter CINT the C++
Interpreter

A Little C++

December 2001 - version 3.1d 81

7 CINT the C++ Interpreter

The subject of this chapter is CINT, ROOT's command line interpreter and script
processor. First, we explain what CINT is and why ROOT uses it. Then CINT as
the command line interpreter, the CINT commands, and CINT's extensions to C++
are discussed. CINT as the script interpreter is also explained and illustrated with
several examples.

What is CINT?

CINT, which is pronounced C-int, is a C++ interpreter. An interpreter takes a
program, in this case a C++ program, and carries it out by examining each
instruction and in turn executing the equivalent sequence of machine language. For
example, an interpreter translates and executes each statement in the body of a
loop "n" times. It does not generate a machine language program. This may not be
a good example, because most interpreters have become 'smart' about loop
processing.

A compiler on the other hand, takes a program and makes a machine language
executable. Once compiled the execution is very fast, which makes a compiler best
suited for the case of "built once, run many times". For example, the ROOT
executable is compiled occasionally and executed many times. It takes anywhere
from 1 to 45 minutes to compile ROOT for the first time (depending on the CPU).
Once compiled it runs very fast. On the average, a compiled program runs ten
times faster than an interpreted one.

Because it takes much time to compile, using a compiler is cumbersome for rapid
prototyping when one changes and rebuilds as often as every few minutes. An
interpreter, optimized for code that changes often and runs a few times, is the
perfect tool for this.

Most of the time, an interpreter has a separate scripting language, such as Python,
IDL, and PERL, designed especially for interpretation, rather than compilation.
However, the advantage of having one language for both is that once the prototype
is debugged and refined, it can be compiled without translating the code to a
compiled language.

CINT being a C++ interpreter is the tool for rapid prototyping and scripting in C++.
It is a stand-alone product developed by Masaharu Goto. It's executable comes
with the standard distribution of ROOT ($ROOTSYS/bin/cint), and it can also be
installed separately from:

http://root.cern.ch/CINT.html

This page also has links to all the CINT documentation. The downloadable tar file
contains documentation, the CINT executable, and many demo scripts, which are
not included in the regular ROOT distribution.

Here is a list of CINT's main features:

CINT the C++ Interpreter December 2001 - version 3.1d 83

Supports K&R-C, ANSI-C, and ANSI-C++

CINT covers 80-90% of the K&R-C, ANSI-C and C++ language constructs. It
supports multiple inheritance, virtual function, function overloading, operator
overloading, default parameter, template, and much more. CINT is robust
enough to interpret its own source code. CINT is not designed to be a 100%
ANSI/ISO compliant C++ language processor. It is a portable scripting
language environment, which is close enough to the standard C++.

Interprets Large C/C++ source code

CINT can handle huge C/C++ source code, and loads source files quickly. It
can interpret its own, over 70,000 lines source code.

Enables mixing Interpretation & Native Code

Depending on the need for execution speed or the need for interaction, one
can mix native code execution and interpretation. "makeCINT" encapsulates
arbitrary C/C++ objects as a precompiled libraries. A precompiled library can
be configured as a dynamically linked library. Accessing interpreted code and
precompiled code can be done seamlessly in both directions.

Provides a Single-Language solution

CINT/makeCINT is a single-language environment. It works with any ANSI-
C/C++ compiler to provide the interpreter environment on top of it.

Simplifies C++

CINT is meant to bring C++ to the non-software professional. C++ is simpler
to use in the interpreter environment. It helps the non-software professional
(the domain expert) to talk the same language as the software counterpart.
Provides RTTI.and a Command Line

CINT can process C++ statements from command line, dynamically
define/erase class definition and functions, load/unload source files and
libraries. Extended Run Time Type Identification is provided, allowing you to
explore unthinkable way of using C++.

Has a Built-in Debugger and Class Browser

CINT has a built-in debugger to debug complex C++ code. A text based class
browser is part of the debugger.

Is Portable

CINT works on number of operating systems: HP-UX, Linux, SunOS, Solaris,
AIX, Alpha-OSF, IRIX, FreeBSD, NetBSD, NEC EWS4800, NewsOS, BeBox,
Windows-NT, Windows-9x, MS-DOS, MacOS, VMS, NextStep, Convex.

84

December 2001 - version 3.1d CINT the C++ Interpreter

The ROOT Command Line Interface

Start up a ROOT session by typing ROOT at the system prompt.

hproot) [199] root

R R I I b I b I e b b b 2 b I e S b I I b b e S b b b Sb b b dh b b b Sh b 2 2b b 3

*

WELCOME to ROOT

Version 2.25/02 21 August 2000

http://root.cern.ch

*
*
*
*
*
*
*
*
*

*
*
*
*
* You are welcome to visit our Web site
*
*
*

R R R I I I I I I I S I I b b I I b I e I b I 2 b I e b b I b b b 4h b 2 e

CINT/ROOT C/C++ Interpreter version 5.14.47, RAug 12 2000
Type ? for help. Commands must be C++ statements.
Enclose multiple statements between { }.

Now create a TLine object:

root [] TLine 1

root [] 1l.Print()

TLine X1=0.000000 Y1=0.000000 X2=0.000000 Y2=0.000000
root [] 1l.SetX1(10)

root [] 1l.Set¥1l(1ll)

root [] 1l.Print()

TLine X1=10.000000 Y1=11.000000 X2=0.000000 Y2=0.000000
root [] .g

0x4038f080 class TLine 1 , size=40

0x0 protected: Double t £fX1 //X of 1lst point
0x0 protected: Double t fY1 //Y of 1lst point
0x0 protected: Double t £fX2 //X of 2nd point
0x0 protected: Double t fY2 //Y of 2nd point
0x0 private: static class TClass* fgIsA

Here we note:

e Terminating ; not required (see the section ROOT/CINT Extensions to C++).

e Emacs style command line editing.
e Raw interpreter commands start with a . (dot).

CINT the C++ Interpreter December 2001 - version 3.1d

85

root [] .class TLine

class TLine //A line segment

size=0x28
List of base class-—-—————="-""""""="""""""-"-""—"—"—"—"-~———
0x0 public: TObject //Basic ROOT object
Oxc public: TAttLine //Line attributes
List of member variable----———-----"---"-"-"-"------—~
Defined in TLine

0x0 protected: Double t £fX1 //X of 1lst point
0x0 protected: Double t fY1 //Y of 1st point
0x0 protected: Double t £fX2 //X of 2nd point
0x0 protected: Double t fY2 //Y of 2nd point
0x0 private: static class TClass* fgIsA

List of member function--------——---------————-——-
Defined in TLine

filename line:size busy function type and name
(compiled) 0:0 0 public: class TLine TLine (void);
(compiled) 0:0 0 public: Double t GetXl (void);
(compiled) 0:0 0 public: Double t GetX2(void);
(compiled) 0:0 0 public: Double t GetYl (void);
(compiled) 0:0 0 public: Double t GetY2(void);
(compiled) 0:0 public: virtual void SetXl (Double t x1);
(compiled) 0:0 public: virtual void SetX2 (Double t x2);
(compiled) 0:0 public: virtual void SetYl (Double t yl);
(compiled) 0:0 public: virtual void Set¥Y2 (Double t y2);
(compiled) 0:0 0 public: void ~TLine (void);
root [] 1.Print(); > test.log
root [] 1.Dump(); >> test.log
root [] ?

Here we see:

e Use .class as quick help and reference

e Unix like I/O redirection (; is required before >)

e Use 2 to get help on all ““raw" interpreter commands

86 December 2001 - version 3.1d CINT the C++ Interpreter

Now lets execute a multi-line command:

root
end
end
end
end
end
end
end
TLin
TLin
TLin
TLin
TLin
root

(1 {
with '}'> TLine 1;
with '}'> for (int i = 0;
with '}'> 1l.SetX1(1i);
with '}'> 1.SetY1 (i+l);
with '} '> 1.Print();
with '}'> }
with '}'> }
e X1=0.000000 Y1=1.000000
e X1=1.000000 Y1=2.000000
e X1=2.000000 Y1=3.000000
e X1=3.000000 Y1=4.000000
e X1=4.000000 Y1=5.000000

[]

i< 5; i++) {

X2=0.000000
X2=0.000000
X2=0.000000
X2=0.000000
X2=0.000000

Y2=0.
Y2=0.
Y2=0.
Y2=0.
Y2=0.

000000
000000
000000
000000
000000

Here we note:

A multi-line command starts with a { and ends with a }.

Every line has to be correctly terminated with a ; (like in "real" C++).

All objects are created in global scope.

There is no way to back up, you are better off writing a script.
Use . g to exit root.

The ROOT Script Processor

ROOT script files contain pure C++ code. They can contain a simple sequence of
statements like in the multi command line example given above, but also arbitrarily

complex class and function definitions.

Un-named Scripts

Lets start with a script containing a simple list of statements (like the multi-

command line example given in the previous section). This type of script must start
with a { and end with a }and is called an un-named script. Assume the file is called

scriptl.C

{

#include <iostream.h>

float x = 3.;
float y = 5.7
int i = 101;
cout <<" x = "<«

cout << " Hello" << endl;

y = "<<y<<" i = "<<i<< endl;

To execute the stream of statements in script1.cC do:

root

[]

.X scriptl.C

This loads the contents of file script1.C and executes all statements in the
interpreter's global scope.

CINT the C++ Interpreter

December 2001 - version 3.1d

87

One can re-execute the statements by re-issuing ".x scriptl.cC" (since there is
no function entry point).

Scripts are searched for in the Root .MacroPath as defined in your . rootrc file.
To check which script is being executed use:

root

/home/rdm/root/./scriptl.C

[] .which scriptl.C

Named Scripts

Lets change the un-named script to a named script. Copy file scriptl.Cto
script2.C and add a function statement. Like this:

#include <iostream.h>

int main ()

{

cout << " Hello" << endl;
float x = 3.;

float y = 5.7
int i= 101;
cout <<" x = "<K<x<" y = "<<y<<" 1 = "<<i<<endl;

return 0;

Notice that no surrounding { } are required in this case. To execute function
main () in script2.C do:

root [] .L secript2.C // load script in memory
root [] main() // execute entry point main

Hello

x =3 y=54i=101

(int) 0

root [] main() // execute main() again

Hello

x =3 y=54i=101

(int) 0

root [] .func // list all functions known by CINT
filename line:size busy function type and name
script2.C 4:9 0 public: int main();

The last command shows that main () has been loaded from file script2.c, that
the function main () starts on line 4 and is 9 lines long. Notice that once a function
has been loaded it becomes part of the system just like a compiled function.

December 2001 - version 3.1d CINT the C++ Interpreter

Now we copy file script2.Cto script3.C and change the function name from
main () to script3(int j = 10):

#include <iostream.h>

int script3(int j = 10)

{
cout << " Hello" << endl;
float x = 3.;
float y = 5.7
int i =7
cout <<" x
return 0;

’

"Lx<<" y = "<<y<<" i = "<<i<<endl;

To execute script3 () in script3.cC type:

root [] .x script3.C(8)

This loads the contents of file script3.C and executes entry point script3 (8).
Note that the above only works when the filename (minus extension) and function
entry point are both the same. Function script3 () can still be executed multiple

times:

root [] script3()
Hello

x =3y =51=10
(int) 0

root [] script3(33)
Hello

x =3y =051= 33
(int) 0

In a named script, the objects created on the stack are deleted when the function
exits. For example, this scenario is very common. You create a histogram in a
named script on the stack. You draw the histogram, but when the function exits the
canvas is empty and the histogram disappeared.

To avoid histogram from disappearing you can create it on the heap (by using
new). This will leave the histogram object intact, but the pointer in the named script
scope will be deleted.

Since histograms (and trees) are added to the list of objects in the current
directory, you can always retrieve them to delete them if needed.

root[] TH1F *h = (TH1F*)gDirectory->Get ("myHist") ;

or

root[] TH1F *h = (TH1F*)gDirectory->GetList()->FindObject ("myHist") ;

In addition, histograms and trees are automatically deleted when the current
directory is closed. This will automatically take care of the clean up. See chapter
Input/Output.

CINT the C++ Interpreter December 2001 - version 3.1d 89

Resetting the Interpreter Environment

Variables created on the command line and in un-named scripts are in the

interpreter's global scope, which makes the variables created in un-named scripts
available on the command line event after the script is done executing. This is the
opposite of a named script where the stack variables are deleted when the function
in which they are defined has finished execution.

When running an un-named script over again and this is frequently the case since

un-named scripts are used to prototype, one should reset the global environment to

clear the variables. This is done by calling grROOT->Reset () . It is good practice,
and you will see this in the examples, to begin an un-named script with grOOT -
>Reset. It clears the global scope to the state just before executing the previous
script (not including any logon scripts).

The gROOT->Reset () calls the destructor of the objects if the object was created
on the stack. If the object was created on the heap (via new) it is not deleted, but
the variable is no longer associated with it. Creating variables on the heap in un-
named scripts and calling grROOT->Reset () without you calling the destructor
explicitly will cause a memory leak.

This may be surprising, but it follows the scope rules. For example, creating an

object on the heap in a function (in a named script) without explicitly deleting it will
also cause a memory leak. Since when exiting the function only the stack variables
are deleted.

The code below shows gROOT->Reset calling the destructor for the stack
variable, but not for the heap variable. In the end, neither variable is available, but
the memory for the heap variable is not released.

Here is an example.

root [] gDebug = 1
(const int)1l

root [] TFile stackVar ("stack.root","RECREATE")
TKey Writing 86 bytes at address 64 for ID= stack.root Title=
root [] TFile *heapVar = new TFile("heap.root", "RECREATE")

TKey Writing 84 bytes at address 64 for ID= heap.root Title=

We turn on Debug to see what the subsequent calls are doing. Then we create two
variables, one on the stack and one on the heap.

root [] gROOT->Reset()
TKey Writing 48 bytes at address 150 for ID= stack.root Title=
TKey Writing 54 bytes at address 198 for ID= stack.root Title=
TFile dtor called for stack.root
TDirectory dtor called for stack.root

When we call grOOT->Reset, CINT tells us that the destructor is called for the
stack variable, but it doesn't mention the heap variable.

root [] stackVar

Error: No symbol stackVar in current scope
FILE:/var/tmp/faaa0ljWe cint LINE:1

*** Interpreter error recovered ***

root [] heapVar

Error: No symbol heapVar in current scope
FILE:/var/tmp/gaaa0ljWe cint LINE:1

*** Interpreter error recovered ***

Neither variable is available in after the call to reset.

90

December 2001 - version 3.1d CINT the C++ Interpreter

root [] gROOT->FindObject("stack.root")
(class TObject*)0x0

root [] gROOT->FindObject ("heap.root")
(class TObject*)0x106bfb30

The object on the stack is deleted and shows a null pointer when we do a
FindObject. However, the heap object is still around and taking up memory.

A Script Containing a Class Definition

Lets create a small class TMyClass and a derived class TChild. The virtual
TMyClass::Print () method is overridden in TChild . Save this in file called
script4.C.

#include <iostream.h>

class TMyClass {

private:

float £X; //x position in centimeters

float £Y; //y position in centimeters
public:

TMyClass () { fX = fY = -1; }

virtual void Print () const;

void SetX (float x) { fX = x; }

void SetY (float y) { fY = y; }

i

void TMyClass: :Print() const // parent print method
{

cout << "fX = " << fX << ", fY = " << fY << endl;
}
Y
class TChild : public TMyClass {
public:
void Print () const;

}s

void TChild: :Print() const // child print metod
{
cout << "This is TChild::Print ()" << endl;
TMyClass: :Print () ;

CINT the C++ Interpreter December 2001 - version 3.1d 91

To execute script4.C do:

root [] .L script4.C

root [] TMyClass *a = new TChild
root [] a->Print()

This is TChild: :Print ()

fX = -1, fy = -1

root [] a->SetX(10)

root [] a->SetY¥(12)

root [] a->Print()

This is TChild: :Print ()
fX = 10, fYy = 12
root [] .class TMyClass

class TMyClass

size=0x8 FILE:script4.C LINE:3
List of base class-—————"""""""""""""""""""—"-"—"—-"————~——
List of member variable----———-------"-"""-"-"""-"-"-"-—————
Defined in TMyClass

0x0 private: float £fX

0x4 private: float fY
List of member function-------——----"-""-"-"-"-"-"—"-"-"-"-"——————
Defined in TMyClass

filename line:size busy function type and name
script4d.C 16:5 0 public: class TMyClass

TMyClass (void) ;
scriptd.C 22:4 0 public: void Print (void);
scriptd.C 12:1 0 public: void SetX(float x);
script4d.C 13:1 0 public: void SetY(float y);
root [] .qg

As you can see an interpreted class behaves just like a compiled class.
There are some limitations for a class created in a script:

1. They cannot inherit from TObject. Currently the interpreter cannot patch the
virtual table of compiled objects to reference interpreted objects.

2. Because the I/O is encapsulated in TObject and a class defined in a script
can not inherit from TObject, it can not be written to a ROOT file.

For ways to add a class with a shared library and with ACLIC, see the chapter:
"Adding a Class"

92

December 2001 - version 3.1d CINT the C++ Interpreter

Debugging Scripts

A powerful feature of CINT is the ability to debug interpreted functions by means of
setting breakpoints and being able to single step through the code and print
variable values on the way. Assume we have script4.C still loaded, we can then

do:
root [] .b TChild: :Print
Break point set to line 26 scripté4.C
root [] a.Print()

26 TChild::Print () const

27 {

28 cout << "This is TChild::Print ()" << endl;
FILE:script4.C LINE:28 cint> .s

311 operator<<(ostream& ostr,G CINT ENDL& 1)
{return (endl (ostr));
FILE:iostream.h LINE:311 cint> .s

}
This is TChild::Print ()

29 MyClass::Print () ;
FILE:script4.C LINE:29 cint> .s

16 MyClass::Print () const

17 {

18 cout << "fX = " << fX << ", fY = " << fY << endl;
FILE:script4.C LINE:18 cint> .p £X
(float)1.000000000000e+01

FILE:script4.C LINE:18 cint> .s

311 operator<<(ostream& ostr,G_CINT ENDL& i)
{return (endl (ostr));

FILE:iostream.h LINE:311 cint> .s

}

fX = 10, fy = 12

19 }
30 }
2 }
root [] .g

CINT the C++ Interpreter December 2001 - version 3.1d 93

Inspecting Objects

An object of a class inheriting from TObject can be inspected, with the Inspect
method. The TObject: : Inspect method creates a window listing the current
values of the objects members. For example, this is a picture of TFile.

root[] TFile f£("staff.root")
root[] f.Inspect()

@ ROOT Object Inspector = 3
File Edit View Options Inspect Classes Help
backward | forward |
TFile staff.root:0
Member Name Value Title
e 10 File descriptor
fBEGIN 64 First used byte in file
fEND 38474 Last used byte in file
fYersion 22600 File formal version
fCompress 1 (=1 file is compressed, 0 otherwise)
fOption.*fData READ
fUnits 4 Number of bytes for file pointers
fSeekFree 38420 Location on'disk of free segments structive
fNbytesFree 54 Number of bytes for free segments struciure
fWritten 0 Number of objects written so far
fSumButter 0 Sum of buffer sizes of obfects written so far
fSum2Bufier 0 Sum of squares of buffer sizes of objects written so far
fFree =0 Free segiments linked list table
fBytesirite 0 Number of bytes written to this file
fBytesRead 352 Number of bytes read from this file
fModitied 1 true & direciory has been modified
fWritable 0 trie i directory is writable

fCatimeC.1Datime 20001012/173203
fCatimeM.tDatime 20001012/173204

fNbytesKeys 118 Number of bytes for the keys
fNbytesName 56 Number of Bytes in TNamed af creation time
fSeekDir 64 Location of directory on file
fSeekParent 0 Location of parent Q.:'rece‘ory on file

{SeekKeys 38304 Location of Keys record on file

“fFile =>10711b60 | pointer to curvent file in memory

“fMother -0 pointer to mother (}f the directory

‘fList ->10613918 | ‘Foiwrer to abjects list in memaory
fKeys -=10711e08 | Foinrer to keys list in memory
fName."iData stafl.root

fTitle.*fCala

fUniquelD 0 object uniqie ident ifier

fBits 50331649 bif fleld status wor

You can see the pointers are in red and can be clicked on to follow the pointer to
the object. For example, here we clicked on fKeys, the list of keys in memory.

94 December 2001 - version 3.1d CINT the C++ Interpreter

I ROOT Object Inspector =] B3
Eile Edit Miew Options Inspect Classes Help
backward | forward | =
THashLis1 0 Doubly linked list with hashtable for lookup
Member Hame Valne Title
“fTable —-=10711e30 Hashtable used for guick lookup of objects
*fFirst —=108a7dd0 pointer to first entry in linked list
"fLast -+10Ga7ddo pointer to last entry in linked list
"fCache —=0 aache to speedup segqientiod cailing of Before() and After!) functions
fAscending \ sorting erder (when calling Sortf) or for TSortedLis?)
1Sorted \ true if collection has been sorted
Hlame “Data
1Size 1 number of elements in collection o
fUniquelD \ object znigue identifier
TIBitS 50331644 bit field status word | _|;I
4 >

If you clicked on fList, the list of objects in memory and there were none, no new
canvas would be shown.

On top of the page are the navigation buttons to see the previous and next screen.

ROOT/CINT Extensions to C++

In the next example, we demonstrate three of the most important extensions
ROOT/CINT makes to C++. Start ROOT in the directory SROOTSYS/tutorials
(make sure to have firstrun ".x hsimple.C"):

root

(class TFile*)0x4045e690

root [] £.1s()

TFile** hsimple.root

TFile* hsimple.root
KEY: THI1F hpx;1 This is the px distribution
KEY: TH2F hpxpy;1l py ps px
KEY: THProfile hprof;1 Profile of pz versus px
KEY: TNtuple ntuple;l Demo ntuple

root [] hpx.Draw()

NULL

Warning in <MakeDefCanvas>: creating a default canvas with name

cl

root [] .qg

£

[] new TFile ("hsimple.root")

The first command shows the first extension; the declaration of £ may be omitted
when "new" is used. CINT will correctly create £ as pointer to object of class
TFile.

The second extension is shown in the second command. Although £ is a pointer to
TFile we don't have to use the pointer de-referencing syntax "->" but can use the

simple "." notation.

CINT the C++ Interpreter

December 2001 - version 3.1d 95

The third extension is more important. In case CINT cannot find an object being
referenced, it will ask ROOT to search for an object with an identical name in the
search path defined by TROOT: : FindObject () . If ROOT finds the object, it
returns CINT a pointer to this object and a pointer to its class definition and CINT
will execute the requested member function. This shortcut is quite natural for an
interactive system and saves much typing. In this example, ROOT searches for
hpx and finds it in simple.root.

The fourth is shown below. There is no need to put a semicolon at the end of a
line. The difference between having it and leaving it off is that when you leave it off
the return value of the command will be printed on the next line. For example:

root[] 23+5 // no semicolon prints the return value
(int) 28

root[] 23+5; // semicolon no return value is printed
root[]

Be aware that these extensions do not work when the interpreter is replaced by a
compiler. Your code will not compile, hence when writing large scripts, it is best to
stay away from these shortcuts. It will save you from having problems compiling
your scripts using a real C++ compiler.

ACLIC - The Automatic Compiler of Libraries for
CINT

Instead of having CINT interpret your script there is a way to have your scripts
compiled, linked and dynamically loaded using the C++ compiler and linker. The
advantage of this is that your scripts will run with the speed of compiled C++ and
that you can use language constructs that are not fully supported by CINT. On the
other hand, you cannot use any CINT shortcuts (see CINT extensions) and for
small scripts, the overhead of the compile/link cycle might be larger than just
executing the script in the interpreter.

ACLIC will build a CINT dictionary and a shared library from your C++ script, using
the compiler and the compiler options that were used to compile the ROOT
executable. You do not have to write a makefile remembering the correct compiler
options, and you do not have to exit ROOT.

Usage

Before you can compile your interpreted script you need to add include statements
for the classes used in the script. Once you did that, you can build and load a
shared library containing your script. To load it, use the . . command and append
the file name with a "+".

root [] .L MyScript.C+
root [] .files

*file="/home/./MyScript C.so"

The + option generates the shared library and naming it by taking the name of the
file "filename" but replacing the dot before the extension by an underscore and by
adding the shared library extension for the current platform.

For example on most platforms, hsimple.cxx will generate hsimple cxx.so.

96

December 2001 - version 3.1d CINT the C++ Interpreter

It uses the directive fMakeSharedLibs to create a shared library. If loading the
shared library fails, it tries to output a list of missing symbols by creating an
executable (on some platforms like OSF, this does not HAVE to be an executable)
containing the script. It uses the directive fMakeExe to do so. For both directives,
before passing them to TSystem: : Exec, it expands the variables
SSourceFiles, $SharedLib, $LibName, SIncludePath, $LinkedLibs,
SExeName and $SObjectFiles. See SetMakeSharedLib () for more information
on those variables.

If we execute a . files command we can see the newly created shared library is
in the list of loaded files.

The + command will check for a more recent timestamp on the script and the script
header file before rebuilding the shared library. Note that it does not automatically
check the time stamp of the include files except for the one that has the same
name as the script with the header extension.

To ensure that the shared library is rebuilt you can use the ++ syntax:

root[] .L MyScript.C++

To build, load, and execute the function with the same name as the file you can
use the .x command. This is the same as executing a named script. You can have
parameters and use .x or .X. The only difference is you need to append a + or a
++,

root[] .x MyScript.C+ (4000)
Creating shared library
/home/./MyScript C.so

The alternative to . L is to use gROOT: : LoadMacro. For example, in one script
you can use ACLIC to compile and load another script.

gROOT->LoadMacro ("MyScript.C+")
gROOT->LoadMacro ("MyScript.C++")

+ and ++ have the same meaning as described above. You can also use the
gROOT: :Macro method to load and execute the script.

gROOT->Macro ("MyScript.C++")

NOTE: You should not call ACLiC with a script that has a function called main ().
When ACLIC calls rootcint with a function called main it tries to add every
symbol it finds while parsing the script and the header files to the dictionary. This
includes the system header files and the ROOT header files. This will result in
duplicate entries at best and crashes at worst, because some classes in ROOT
needs special attention before they can be added to the dictionary.

Intermediate Steps and Files
ACLIC executes two steps and a third one if needed. These are:
e Calling rootcint to create a CINT dictionary. rootcint is a ROOT specific

version of makecint, CINT's generic dictionary generator.
e Calling the compiler to build the shared library from the script

CINT the C++ Interpreter December 2001 - version 3.1d 97

e |f there are errors, it calls the compiler to build a dummy executable to clearly
report unresolved symbols.

ACLIC makes a shared library with a CINT dictionary containing the classes and
functions declared in the script. It also adds the classes and functions declared in
included files with the same name as the script file and any of the following
extensions: .h, .hh, .hpp, .hxx, .hPP, .hxXX.This means you cannot
combine scripts from different files into one library by using #include statements;
you will need to compile each script separately. In a future release, we plan to add
the global variables declared in the script to the dictionary also. If you are curious
about the specific calls, you can raise the ROOT debug level (gDebug = 5).
ACLIC will print the three steps.

Moving between Interpreter and Compiler

The best way to develop portable scripts is to make sure you can always run them
with both, the interpreter and with ACLIC. To do so, do not use the CINT
extensions and program around the CINT limitations. When it is not possible or
desirable to program around the CINT limitations, you can use the C preprocessor
symbols defined for CINT and rootcint.

The preprocessor symbol CINT is defined for both CINT and rootcint. The
symbol MAKECINT _ is only defined in rootcint.

Use 'defined(_ CINT_) || defined(_ MAKECINT) to bracket code that
needs to seen by the compiler and rootcint, but will be invisible to the
interpreter.

Use !defined(__CINT) to bracket code that should be seen only by the
compiler and not by CINT or rootcint.

For example, the following will hide the declaration and initialization of the array
gArray from both CINT and rootcint.

#if

int gArrayl[]
fendif

'defined(CINT)
{ 2, 3, 4};

Because ACLIC calls rootcint to build a dictionary, the declaration of gArray
will not be included in the dictionary, and consequently, gArray will not be
available at the command line even if ACLIC is used. CINT and rootcint will
ignore all statements between the "#if !defined (_ CINT_)" and
"#endif". If you want to use gArray in the same script as its declaration, you can
do so. However, if you want use the script in the interpreter you have to bracket the
usage of gArray between #1if's, since the definition is not visible.

If you add the following preprocessor statements, gArray will be visible to
rootcint but still not visible to CINT. If you use ACLIC, gArray will be available
at the command line and be initialized properly by the compiled code.

#if !defined(CINT)
int gArrayl([] = { 2, 3, 4};
#elif defined(_ MAKECINT)

int gArrayl(];
#endif

We recommend you always write scripts with the needed include statements. In
most cases, the script will still run with the interpreter. However, a few header files
are not handled very well by CINT.

These types of headers can be included in interpreted and compiled mode:

98

December 2001 - version 3.1d CINT the C++ Interpreter

e The subset of standard C/C++ headers defined in
SROOTSYS/cint/include.

e Headers of classes defined in a previously loaded library (including ROOT's
own). The defined class must have a name known to ROOT (i.e. a class with
a ClassDef).

A few headers will cause problems when they are included in interpreter mode,
because they are already included by the interpreter itself. In general, the
interpreter needs to know whether to use the interpreted or compiled version. The
mode of the definition needs to match the mode of the reference.

Here are the cases that need to be excluded in interpreted mode, but included for
rootcint. Bracket these with :
!defined(_ CINT_) || defined(_ MAKECINT)

e All CINT headers, see SROOTSYS/cint/inc

e Headers with classes named other than the file name. For example:
Rtypes.h and GuiTypes.h.

e Headers with a class defined in a libraries before the library is loaded. For
example: havinga #include "TLorenzVector.h before gSystem-
>Load ("1libPhysics").

This will also cause problems when compiling the script, but a clear error
message will be given. With the interpreter it may core dump. Bracket these
type of include statements with #1f !defined (__CINT_), this will print
an error in both modes.

Hiding header files from rootcint that are necessary for the compiler but optional
for the interpreter can lead to a subtle but fatal errors. For example:

#ifndef CINT
#include "TTree.h"
felse

class TTree;
#endif

class subTree : public TTree {
}i

In this case, rootcint does not have enough information about the TTree class
to produce the correct dictionary file. If you try this, rootcint and compiling will
be error free, however, instantiating a subTree object from the CINT command
line will cause a fatal error.

In general it is recommended to let rootcint see as many header files as
possible.

Setting the Include Path
You can get the include path by typing:

root [] .include

You can append to the include path by typing:

root [] .include "-I$HOME/mypackage/include "

In a script you can set the include path:

CINT the C++ Interpreter December 2001 - version 3.1d 99

gSystem->SetIncludePath (" -ISHOME/mypackage/include ")

The $ROOTSYS/include directory is automatically appended to the include path,
so you don't have to worry about including it, however if you have already added a
path, this command will overwrite it.

100 December 2001 - version 3.1d CINT the C++ Interpreter

8 Object Ownership

An object has ownership of another object if it has permission to delete it.
Usually ownership is held by a collection or a parent object such as a pad.

To prevent memory leaks and multiple attempts to delete an object, you need
to know which objects are owned by ROOT and which are owned by you.

The following rules apply to the ROOT classes.

- Histograms, trees, and event lists created by the user are owned by
current directory (gDirectory). When the current directory is closed or
deleted the objects it owns are deleted also.

- The TROOT master object (JROOT) has several collections of objects.
Objects that are members of these collections are owned by gROOT (see
the paragraph "Ownership by the Master TROOT Object (QROOT)"
below).

- Objects created by another object, for example the function object
(e.g.TF1) created by the TH1: : Fit method is owned by the histogram.

- An object created by DrawCopy methods, is owned by the pad it is
drawn in.

If an object fits none of these cases, the user has ownership. The next
paragraphs describe each rule and user ownership in more detail.

Ownership by Current Directory (gDirectory)

When a histogram, tree, or event list (TEventList) is created, it is added to
the list of objects in the current directory by default. You can get the list of
objects in a directory and retrieve a pointer to a specific object with the
GetList method. This example retrieves a histogram.

TH1F *h = (TH1F*)gDirectory->GetList () -
>FindObject ("myHist") ;

The method TDirectory: :GetList () returns a TList of objects in the
directory. It looks in memory, and is implemented in all ROOT collections.

You can change the directory of a histogram, tree, or event list with the
SetDirectory method. Here we use a histogram for an example, but the
same applies to trees and event lists.

h->SetDirectory (newDir)

You can also remove a histogram from a directory by using
SetDirectory (0). Once a histogram is removed from the directory, it will

Object Ownership December 2001 - version 3.1d 101

not be deleted when the directory is closed. It is now your responsibility to
delete this histogram once you have finished with it.

To change the default that automatically adds the histogram to the current
directory, you can call the static function:

TH1::AddDirectory (kFALSE) ;

All histograms created here after will not be added to the current directory. In
this case, you own all histogram objects and you will need to delete them and
clean up the references.

You can still set the directory of a histogram by calling SetDirectory once
it has been created as described above.

Note that, when a file goes out of scope or is closed all objects on its object
list are deleted.

Ownership by the Master TROOT Object
(gROOT)

The master object grOOT, maintains several collections of objects. For
example, a canvas is added to the collection of canvases and it is owned by
the canvas collection.

TSeqgCollection* fFiles List of files (TFile)
TSegCollection* fMappedFiles List of memory mapped
files (TMappedFiele)
TSeqgCollection* fSockets List of network sockets
(TSocket and TServerSocket)
TSegCollection* fCanvases List of canvases (TCanvas)
TSeqCollection* fStyles List of styles (TStyle)
TSeqgCollection* fFunctions List of analytic functions
(TF1l, TF2, TFE3)
TSeqgCollection* fTasks List of tasks (TTask)
TSeqgCollection* fColors List of colors (TColor)
TSegCollection* fGeometries List of geometries (?)
TSeqgCollection* fBrowsers List of browsers (TBrowser)
TSeqgCollection* fSpecials List of special objects
TSeqgCollection* fCleanups List of recursiveRemove
collections

_ : These collections are also displayed
% ROOT Obiject Browser a0 in the root folder of the Object
Eile Miew Options Help | Browser.
I,a root Most of these collections are self
. . explanatory. The special cases are
| &l Folders | Contents of "/root the collections of specials and
B I:l Browsers I:l Canvases cleanups.
(homesspanacek |23 Clagses A Ckanups
(IROOT Files D Colors D Functions The COI |eCtI0n Of
[Geometries [Handlers SpeCials
(3 MapFiles DHDD_T Files This collection contains objects of the
([Sockets () 5mecials following classes: TCut,
[0 streamerinfo [Styles TMultiDimFit, TPrincipal,
[Tasks TChains. In addition it contains the
gHtml object, gMinuit objects, and
|15 Ohiects. | Doubly linked list v
102 December 2001 - version 3.1d Object Ownership

the array of contours graphs (TGraph) created when calling the Draw
method of a histogram with the "CONT, LIST" option.

Access to the Collection Contents

The current content for the collection listed above can be accessed with the
corresponding gROOT->GetListOf method (for example
gROOT->GetListOfCanvases). In addition,
gROOT->GetListOfBrowsables returns a collection of all objects visible
on the left side panel in the browser (see the image of the Object Browser
above).

Ownership by Other Objects

When an object is created by another, the creating object is the owner of the
one it created. For example:

myHisto->Fit ("gaus")

The call to Fit copies the global TF1l object gaus and
attaches the copy to the histogram. When the histogram is
deleted, the copy of gaus is deleted also.

When a pad is deleted or cleared, all objects in the pad
with the kCanDelete bit set are automatically deleted.
Currently the objects created by the DrawCopy methods,
have the kCanDelete bit set and are therefore owned by
the pad.

Ownership by the User

The user owns all objects not described in one of the above cases.

TObject has two bits, kCanDelete and kMustCleanUp, thatinfluence
how an object is managed (in TObject::fBits). These arein an
enumeration in TObject.h. To set these bits do:

MyObject->SetBit (kCanDelete)
MyObject->SetBit (kMustCleanup)

The bits can be reset and tested with the
TObject::ResetBit and TObject::TestBit methods.

The kCanDelete Bit

The gROOT collections (see above) own their members and will delete them
regardless of the kCanDelete bit. In all other collections, when the collection
Clear method is called (i.e. TList: :Clear ()), members with the
kCanDelete bit set, are deleted and removed from the collection. If the
kCanDelete bitis not set, the object is only removed from the collection but
not deleted.

If a collection Delete (TList: :Delete ()) method is called, all objects in
the collection are deleted without considering the kCanDelete bit.

Object Ownership December 2001 - version 3.1d 103

It is important to realize that deleting the collection (i.e. delete
MyCollection), DOES NOT delete the members of the collection. If the
user specified MyCollection->SetOwner () the collection owns
the objects and delete MyCollection will delete all its
members. Otherwise you need to:

// delete all member objects in the collection
MyCollection->Delete () ;

// and delete the collection object

delete MyCollection;

Note that kCanDelete is automatically set by the DrawCopy method and it
can be set for any object by the user.

For example, all graphics primitives must be managed by the user. If you
want TCanvas to delete the primitive you created you have to set the
kCanDelete bit

The kCanDelete bit setting is displayed with TObject::1s () . The last
number is either 1 or 0 and is the kCanDelete bit.

root [] TCanvas MyCanvas ("MyCanvas'")
root [] MyCanvas.Divide(2,1)
root [] MyCanvas->cd(MyCanvas_1)
root [] hstat.Draw() // hstat is an existing THIF
root [] MyCanvas->cd(MyCanvas_2)
root [] hstat.DrawCopy() // DrawCopy sets the kCanDelete
bit
(class TH1*)0x88e73f8
root [] MyCanvas.ls()
Canvas Name=MyCanvas ..
TCanvas .. Name= MyCanvas ..
TPad .. Name= MyCanvas 1 ..
TFrame
OBJ: THI1F hstat Event Histogram : 0
TPaveText .. title
TPaveStats .. stats
TPad .. Name= MyCanvas 2 ..
TFrame
OBJ: THI1F hstat Event Histogram : 1
TPaveText .. title
TPaveStats .. stats

The kMustCleanup Bit

When the kMustCleanUp bit is set, the object destructor will remove the
object and its references from all collections in the clean up collection
(gROOT: : fCleanups).

An object can be in several collections, for example if an objectis in a
browser and on two canvases. If the kMustCleanup bitis set, it will
automatically be removed from the browser and both canvases when the
destructor of the object is called.

kMustCleanUp is set

e When an object is added to a pad (or canvas) in
TObject: :AppendPad.

e When an object is added to a TBrowser with TBrowser: : Add.
e When an objectis added to a TFolder with TFolder::Add.

104

December 2001 - version 3.1d Object Ownership

e When creating an inspector canvas with
TInspectCanvas::Inspector.
e When creating a TCanvas.

e When painting a frame for a pad, the frame's kMustClean up is setin
TPad: :PaintPadFrame

The user can add his own collection to the collection of
clean ups, to take advantage of the automatic garbage
collection.

For example:

// create two list

TList *myListl, *myList2;

// add both to of clean ups
gROOT->GetListOfCleanUps () ->Add (myListl) ;
gROOT->GetListOfCleanUps () ->Add (myList2) ;

// assuming myObject is in myListl and myList2, when
calling:

delete myObject;

// the object is deleted from both lists

Object Ownership December 2001 - version 3.1d 105

9 Graphics and the
Graphical User Interface

Graphical capabilities of ROOT range from 2D objects (lines, polygons,
arrows) to various plots, histograms, and 3D graphical objects. In this
chapter, we are going to focus on principals of graphics and 2D objects. Plots
and histograms are discussed in a chapter of their own.

Drawing Objects

In ROOT, most objects derive from a base class TObject. This class has a
virtual method Draw () so all objects are supposed to be able to be "drawn".

The basic whiteboard on which an object is drawn is called a canvas (defined
by the class TCanvas). If several canvases are defined, there is only one
active at a time. One draws an object in the active canvas by using the
statement:

object.Draw ()

This instructs the object "object" to draw itself. If no canvas is opened, a
default one (named "c1") is instantiated and drawn. Thy the following
commands:

root
root

cl

<TCanvas: :MakeDefCanvas>: created default TCanvas with name

[] TLine a (0.1,0.1,0.6,0.6)
[] a.Draw()

The first statement defines a line and the second one draws it. A default
canvas is drawn since there was no opened one.

Interacting with Graphical Objects

When an object is drawn, one can interact with it. For example, the line
drawn in the previous paragraph may be moved or transformed. One very
important characteristic of ROOT is that transforming an object on the screen
will also transform it in memory. One actually interacts with the real object,
not with a copy of it on the screen. You can try for instance to look at the
starting X coordinate of the line:

Graphics and the Graphical User Interface December 2001 - version 3.1d 107

root[] a.GetXl ()
(double)1.000000000e-1

X1 is the x value of the starting coordinate given in the definition above. Now
move it interactively by clicking with the left mouse button in the line's middle
and try to do again

root[] a.GetXl1l()
(Double t)1.31175468483816005e-01

You do not obtain the same result as before, the coordinates of 'a' have
changed. As said, interacting with an object on the screen changes the object
in memory.

Moving, Resizing and Modifying Objects

Changing the graphic objects attributes can be done with the GUI or
programmatically. First, let's see how it is done in the GUI.

The Left Mouse Button

As was just seen moving or resizing an object is done with the left mouse
button. The cursor changes its shape to indicate what may be done:

Point the object or one part of it: .“ %

- -]
Rotate: =

L

Resize (exists also for the other directions):

Enlarge (used for text):

i
Move: $

Here are some examples of

Moving: Resizing:
File Edit Wiew Options Inspect
abs{3in(x)/x) ||
1\ N

| N

Rotating:

108 December 2001 - version 3.1d Graphics and the Graphical User Interface

[HUE + TR - BUF -ERYNE |

’Jﬂ;igl {Ege

e

With C++ Statements (Programmatically)

How would one move an object in a script? Since there is a tight
correspondence between what is seen on the screen and the object in
memory, changing the object changes it on the screen.

For example, try to do:

root[] a.SetX1(0.9)
This should change one of the coordinates of our line, but nothing happens
on the screen. Why is that? In short, the canvas is not updated with each
change for performance reasons. See the sub section on: "Updating the Pad"
in the next section.
Selecting Objects
The Middle Mouse Button
Objects in a canvas, as well as in a pad, are stacked on top of each other in
the order they were drawn. Some objects may become "active" objects,
which means they are reordered to be on top of the others. To interactively
make an object "active", you can use the middle mouse button. In case of
canvases or pads, the border becomes highlighted when it is active.
With C++ Statements (Programmatically)
Frequently we want to draw in different canvases or pads. By default, the
objects are drawn in the active canvas. To activate a canvas you can use the
"TPad: :cd () " method.

root[] el->cd()

Graphics and the Graphical User Interface December 2001 - version 3.1d 109

Context Menus: the Right Mouse Button

The context menus are a way to interactively call certain methods of an
object. When designing a class, the programmer can add methods to the
context menu of the object by making minor changes to the header file.

Using Context Menus

On a ROOT canvas, you can right-click on any object and see the context
menu for it. The script hsimple.C draws a histogram. The image below
shows the context menus for some of the objects on the canvas.

0 =———————"Dynamic Filling Example =———————"FH
Eile Edit Yiew Options Inspect Classes Help
® A
I_ TPaveText:title fibution I hpx |
ST Hent = ni
lear Mean = TPaveStats:stats
DeleteText RMSE -—————
EditText — GaveStyle
i A ® TR SetFarmatFit
InseTeaxt e I e R El ST AT
ReadFile SetBordertode SetOptFit
Satallwith SetBordersize Set0ptstat
SetLabel Delete Clear
SethMargin DranClass Inserline
SetBardarSize THI Fhpx DrawClane Setlabel
SetCarnerRadius Durrp SetBorderSize
Sethlame DrawFanel Inspect SetCormerRadius
Delote Fit SetDrawoption SatMame
i el SetlLineAttributes Delete
S SefFillatiributes DrawClass
pierellt Sethdinimum
Cump DrawClane
Staath
Inspect Dump
SetDrawCption TAxis‘i?xr\Jizme 2 3 Inspect
|| e e e SetDrawOption
|| meesmemeesmmn] | Sehlcnliile Setlineattributes
- [ZetRange SetCanvassize P
SetTextattibutes SetTimeDisplay Divide .
: SefTextattributes
SetTimeFarmat UsaCurrentStyle
UnZoom : Range
Sethame tion Savedhs
SetTitle ibutes SetBordertode
Delete utes SetBorderSize
DrawClass R SetEd.itable
DrawClone ek
Dutnp SetGridy
Inspect Setlogx
SetDrawOptioh setlogy
e Setl
Sethdivisions i

This picture shows that drawing a simple histogram involves as many as
seven objects.

When selecting a method from the context menu and that method has
options, the user will be asked for numerical values or strings to fill in the
option. For example, TAxis::SetTitle will prompt you for a string to use
for the axis title.

Structure of the Context Menus

The curious reader will have noticed that each entry in the context menu
corresponds to a method of the class.

Look for example to the menu named TAxis: :xaxis. xaxis is the name of
the object and TAx1s the name of its class. If we look at the list of TAxis
methods, for example in http://www.root.ch/root/html/T Axis.html, we see the
methods SetTimeDisplay and UnZoom, which appear also in the context
menu.

110 December 2001 - version 3.1d Graphics and the Graphical User Interface

There are several divisions in the context menu, separated by lines. The top
division is a list of the class methods; the second division is a list of the
parent class methods. The subsequent divisions are the methods of multiple
parent classes in case of multiple inheritance.

For example, see the TPaveText::title context menu. A TPaveText
inherits from TAttLine, which has the method SetLineAttributes ().

Adding Context Menus for a Class

For a method to appear in the context menu of the object it has to be marked
by // *MENU* in the header file. Below is the line from TAttLine.h that
adds the SetLineAttribute method to the context menu.

virtual void SetLineAttributes (); // *MENU*

Nothing else is needed, since CINT knows the classes and their methods. It
takes advantage of that to create the context menu on the fly when the object
is clicking on.

If you click on an axis, ROOT will ask the interpreter what are the methods of
the TAax1is and which ones are set for being displayed in a context menu.

Now, how does the interpreter know this? Remember, when you build a class
that you want to use in the ROOT environment, you use rootcint that
builds the so-called stub functions and the dictionary. These functions and
the dictionary contain the knowledge of the used classes. To do this,
rootcint parses all the header files.

ROOT has defined some special syntax to inform CINT of certain things, this
is done in the comments so that the code still compiles with a C++ compiler.

For example, you have a class with a Draw () method, which will display
itself. You would like a context menu to appear when on clicks on the image
of an object of this class. The recipe is the following:

1. The class has to contain the ClassDef/ClassImp macros
For each method you want to appear in the context menu, put a
comment after the declaration containing *MENU* or * TOGGLE *
depending on the behavior you expect. One usually uses Set
methods (setters).

For example:

class MyClass

{

: public TObject

ClassDef (MyClass,1)

private
int fvil; // first variable
double fV2; // second variable
public
int GetV1l () {return fV1;}
double GetV2() {return £fV2;}
void SetVl (int x1) { fVvl = x1;} // *MENU*
void SetV2 (double d2) { fV2 = d2;} // *MENU*
void SetBoth (int x1, double d2) {fVl = x1; fV2 =

Graphics and the Graphical User Interface

December 2001 - version 3.1d

111

The *TOGGLE* comment is used to toggle a boolean data field. In that
case, it is safe to call the data field fMyBool where MyBool is the name of
the setter setMyBool. Replace MyBool with your own boolean variable.

3. You can specify arguments and the data members in which to store
the arguments.

For example:

void SetXXX(Int t x1, Float t y2); //*MENU* *ARGS={x1=>fV1}

This statement is in the comment field, after the *MENU*. If there is more
than one argument, these arguments are separated by commas, where £x1
and £Y2 are data fields in the same class.

void SetXXX(Int t x1, Float t y2); //*MENU* *ARGS={x1=>fX1,y2=>fY2}

If the arguments statement is present, the option dialog displayed when
selecting setxxxfield will show the values of variables. We indicate to the
system which argument corresponds to which data member of the class.

Executing Events when a Cursor passes on top of
an Object

This paragraph is for class designers. When a class is designed, it is often
desirable to include drawing methods for it. We will have a more extensive
discussion about this, but drawing an object in a canvas or a pad consists in
"attaching" the object to that pad. When one uses object.Draw (), the
object is NOT painted at this moment. It is only attached to the active pad or
canvas.

Another method should be provided for the object to be painted, the
Paint () method. This is all explained in the next paragraph.

As well as Draw () and Paint (), other methods may be provided by the
designer of the class. When the mouse is moved or a button
pressed/released, the TCanvas function named HandleInput () scans the
list of objects in all it's pads and for each object calls some standard methods
to make the object react to the event (mouse movement, click or whatever).

The second one is DistanceToPrimitive (px,py) . This function
computes a "distance" to an object from the mouse position at the pixel
position (px, py, see definition at the end of this paragraph) and returns this
distance in pixel units. The selected object will be the one with the shortest
computed distance. To see how this works, select the "Event Status"item
in the canvas "Options" menu. ROOT will display one status line showing
the picked object. If the picked object is, for example, a histogram, the status
line indicates the name of the histogram, the position x, y in histogram
coordinates, the channel number and the channel content.

It's nice for the canvas to know what is the closest object from the mouse, but
it's even nicer to be able to make this object react. The third standard method
to be provided is ExecuteEvent (). This method actually does the event
reaction.

Its prototype is where px and py are the coordinates at which the event
occurred, except if the event is a key press, in which case px contains the
key code.

112

December 2001 - version 3.1d Graphics and the Graphical User Interface

void ExecuteEvent (Int_t event,

Int t px, Int t py);

Where event is the event that occurs and is one of the following (defined in

Buttons.h):

kButton2Motion,
kButton2Locate,
kButton2Double,

kNoEvent, kButtonlDown,
kButtonlUp, kButton2Up,

kButton3Motion,
kButton3Locate,
kButton3Double,

kButton2Down, kButton3Down,
kButton3Up, kButtonlMotion,

kButtonlLocate,
kButtonlDouble,
kKeyDown, kKeyUp,

kKeyPress, kMouseMotion, kMouseEnter, kMouselLeave.

We hope the names are self-explanatory.

Designing an ExecuteEvent method is not very easy, except if one wants
very basic treatment. We will not go into that and let the reader refer to the
sources of classes like TLine or TBox. Go and look at their ExecuteEvent
method!

We can nevertheless give some reference to the various actions that may be
performed. For example, one often wants to change the shape of the cursor
when passing on top of an object. This is done with the SetCursor method:

gPad->SetCursor (cursor)

The argument cursor is the type of cursor. It may be:

kBottomLeft, kBottomRight, kTopLeft, kTopRight,
kBottomSide, kLeftSide, kTopSide, kRightSide, kMove,
kCross, kArrowHor, kArrowVer, kHand, kRotate, kPointer,
kArrowRight, kCaret, kWatch.

They are defined in TVirtualX.h and again we hope the names are self-
explanatory. If not, try them by designing a small class. It may derive from
something already known like TLine.

Note that the ExecuteEvent () functions may in turn; invoke such functions
for other objects, in case an object is drawn using other objects. You can also
exploit at best the virtues of inheritance. See for example how the class
TArrow (derived from TLine) use or redefine the picking functions in its
base class.

The last comment is that mouse position is always given in pixel units in all
these standard functions. px=0 and py=0 corresponds to the top-left corner
of the canvas. Here, we have followed the standard convention in windowing
systems. Note that user coordinates in a canvas (pad) have the origin at the
bottom-left corner of the canvas (pad). This is all explained in the paragraph
"Coordinate system of a pad".

Graphics and the Graphical User Interface December 2001 - version 3.1d 113

Graphical Containers: Canvas and Pad

We have talked a lot about canvases, which may be seen as windows. More
generally, a graphical entity that contains graphical objects is called a Pad. A
Canvas is a special kind of Pad. From now on, when we say something about
pads, this also applies to canvases.

A pad (class TPad) is a graphical container in the sense it contains other
graphical objects like histograms and arrows. It may contain other pads (sub-
pads) as well. More technically, each pad has a linked list of pointers to the
objects it holds.

File Edit Yiew Options Inspect Classes Help

This i=s a Pad

L

IHistugram e

Hi
T

L
T[T

~

i

Drawing an object is nothing more than adding its pointer to this list. Look for
example at the code of TH1: :Draw (). It is merely ten lines of code. The last
statement is AppendPad () . This statement calls a method of TObject that
just adds the pointer of the object, here a histogram, to the list of objects
attached to the current pad. Since this is a TObjects method, every object
may be "drawn", which means attached to a pad.

We can illustrate this by the following figure.

The image correspond to this structure:

Padl

Arrow

—
—» Text
— Subpad —

—» Histogram

Label

v

—» Polyline

114 December 2001 - version 3.1d Graphics and the Graphical User Interface

When is the painting done then? The answer is: when needed. Every object
that derives from TObject has a Paint () method. It may be empty, but for
graphical objects, this routine contains all the instructions to effectively paint it
in the active pad. Since a Pad has the list of objects it owns, it will call
successively the Paint () method of each object, thus re-painting the whole
pad on the screen. If the object is a sub-pad, its Paint () method will call the
Paint () method of the objects attached, recursively calling Paint () for all
the objects.

The Global Pad: gPad

When an object is drawn, it is always in the so-called active pad. For every
day use, it is comfortable to be able to access the active pad, whatever it is.
For that purpose, there is a global pointer, called gPad. It is always pointing
to the active pad. If you want to change the fill color of the active pad to blue
but you don't know its name, do this.

root[] gPad->SetFillColor (38)

To get the list of colors, go to the paragraph "Color and color palettes"” or if
you have an opened canvas, click on the View menu, selecting the Colors
item.

Finding an Object in a Pad

Now that we have a pointer to the active pad, gPad and that we know this
pad contains some objects, it is sometimes interesting to access one of those
objects. The method GetPrimitive () of TPad, i.e.

TPad: :GetPrimitive (const char* name) does exactly this. Since
most of the objects that a pad contains derive from TObject, they have a
name. The following statement will return a pointer to the object
myobjectname and put that pointer into the variable obj. As you see, the
type of returned pointer is (TObject*).

root[] obj = gPad->GetPrimitive ("myobjectname")
(class TObject*)0x1063cba8

Even if your object is something more complicated, like a histogram TH1F,
this is normal. A function cannot return more than one type. So the one
chosen was the lowest common denominator to all possible classes, the
class from which everything derives, TObject.

How do we get the right pointer then?

Simply do a cast of the function output that is transforming this output
(pointer) into the right type. For example if the object is a TPavelLabel:

root[] obj = (TPavelLabel*) (gPad->GetPrimitive ("myobjectname"))
(class TPaveLabel*)0x1063cba8

This works for all objects deriving from TObject. However, a question
remains. An object has a name if it derives from TNamed, not from TObject.
For example, an arrow (TArrow) doesn't have a name. In that case, the
"name" is the name of the class. To know the name of an object, just click
with the right button on it. The name appears at the top of the context menu.

In case of multiple unnamed objects, a call to
GetPrimitve ("className") returns the instance of the class that was
first created. To retrieve a later instance you can use

Graphics and the Graphical User Interface December 2001 - version 3.1d 115

GetListOfPrimitives (), which returns a list of all the objects on the
pad,. From the list you can select the object you need.

Hiding an Object

Hiding an object in a pad can be made by removing it from the list of objects
owned by that pad. This list is accessible by the GetListOfPrimitives ()
method of TPad. This method returns a pointer to a TList. Suppose we get
the pointer to the object, we want to hide, call it obj (see paragraph above).
We get the pointer to the list:

root[] 1i = gPad->GetListOfPrimitives ()

Then remove the object from this list:

root[] li->Remove (obj)

The object will disappear from the pad as soon as the pad is updated (try to
resize it for example).

If one wants to make the object reappear:

root[] obj->Draw()

Caution, this will not work with composed objects, for example many
histograms drawn on the same plot (with the option "same"). There are other
ways! Try to use the method described here for simple objects.

The Coordinate Systems of a Pad

Three coordinate systems may be used in a TPad: pixel coordinates,
normalized coordinates (NDC), and user coordinates.

(0,1) (0,0)

(0,0)

(0,0) (1,0)

User coordinates NDC coordinates Pixel coordinates

The User Coordinate System

The most common is the user coordinate system. Most methods of TPad use
the user coordinates, and all graphic primitives have their parameters defined
in terms of user coordinates. By default, when an empty pad is drawn, the
user coordinates are set to a range from 0 to 1 starting at the lower left
corner. At this point they are equivalent of the NDC coordinates (see below).
If you draw a high level graphical object, such as a histogram or a function,
the user coordinates are set to the coordinates of the histogram. Therefore,
when you set a point it will be in the histogram coordinates

116

December 2001 - version 3.1d Graphics and the Graphical User Interface

For a newly created blank pad, one may use TPad: : Range to set the user
coordinate system. This function is defined as:

void Range (float x1, float yl, float x2, float y2)

The arguments x1, x2 defines the new range in the x direction, and the
yl, vy2 define the new range in the y-direction.

root[] TCanvas MyCanvas ("MyCanvas")
root[] gPad->Range(-100, -100, 100, 100)

This will set the active pad to have both coordinates to go from -100 to 100,
with the center of the pad at (0,0). You can visually check the coordinates by
viewing the status bar in the canvas. To display the status bar select
Options:Event Status in the canvas menu.

| tyCarwas 321,122 5=t .28, y=-595

The Normalized Coordinate System (NDC)

Normalized coordinates are independent of the window size and of the user
system. The coordinates range from 0 to 1 and (0,0) correspond to the
bottom-left corner of the pad. Several internal ROOT functions use the NDC
system (3D primitives, PostScript, log scale mapping to linear scale). You
may want to use this system if the user coordinates are not known ahead of
time.

The Pixel Coordinate System

The least common is the pixel coordinate system, used by functions such as
DistanceToPrimitive () and ExecuteEvent (). Its primary use is for
cursor position, which is always given in pixel coordinates. If (px, py) is the
cursor position, px=0 and py=0 corresponds to the top-left corner of the pad,
which is the standard convention in windowing systems.

Using NDC for a particular Object

Most of the time, you will be using the user coordinate system. But
sometimes, you will want to use NDC. For example, if you want to draw text
always at the same place over a histogram, no matter what the histogram
coordinates are. There are two ways to do this. You can set the NDC for one
object or may convert NDC to user coordinates. Most graphical objects offer
an option to be drawn in NDC. For instance, a line (TLine) may be drawn in
NDC by using DrawLineNDC (). A latex formula or a text may use
TText::SetNDC () to be drawn in NDC coordinates.

Graphics and the Graphical User Interface December 2001 - version 3.1d 117

Converting between Coordinates Systems

There are a few utility functions in TPad to convert from one system of
coordinates to another. In the following table, a point is defined by (px, py)
in pixel coordinates; (ux, uy) in user coordinates, (ndcx, ndcy) in NDC

coordinates.

Pixel to User

PixeltoXY (px,py, &ux, &uy)

Conversion Methods of TPad Returns
PixeltoX (px) double
PixeltoY (py) double

changes ux,uy

User to Pixel

XYtoPixel (ux,uy, &px, &py)

UtoPixel (ndcx) int
NDC to Pixel

VtoPixel (ndcy) int

XtoPixel (ux) int

YtoPixel (uy) int

changes px,py

Dividing a Pad into Sub-pads

Dividing a pad into sub pads in order for instance to draw a few histograms,
may be done in two ways. The first is to build pad objects and to draw them
into a parent pad, which may be a canvas. The second is to automatically

divide a pad into horizontal and vertical sub pads.

Creating a Single Sub-pad

The simplest way to divide a pad is to build sub-pads in it. However, this
forces the user to explicitly indicate the size and position of those sub-pads.
Suppose we want to build a sub-pad in the active pad (pointed by gPad).
First, we build it, using a TPad constructor:

root[] subpadl = new TPad("subpadl","The first

subpad",.1,.1,.5,.5)

One gives the coordinates of the lower left point (0.1,0.1) and of the upper

right one (0.5,0.5). These coordinates are in NDC. This means that they are
independent of the user coordinates system, in particular if you have already
drawn for example a histogram in the mother pad.

The only thing left is to draw the pad:

root[] subpadl->Draw()

If you want more sub-pads, you have to repeat this procedure as many times

as necessary.

118

December 2001 - version 3.1d

Graphics and the Graphical User Interface

Dividing a Canvas into Sub-Pads

The manual way of dividing a pad into sub-pads is sometimes very tedious.
There is a way to automatically generate horizontal and vertical sub-pads
inside a given pad.

root[] padl->Divide(3,2)

If padl is a pad then, it will divide the pad into 3 columns of 2 sub-pads:

" A=

The generated sub-pads get names padl i where i is 1 to nxm. In our
case padl 1,padl 2..padl 6:

The names padl 1 etc... correspond to new variables in CINT, so you may
use them as soon as the pad->Divide () was executed. However, in a
compiled program, one has to access these objects. Remember that a pad
contains other objects and that these objects may, themselves be pads. So
we can use the GetPrimitive () method of TPad:

TPad* padl 1 = (TPad*) (padl->GetPrimitive("padl 1"))

One question remains. In case one does an automatic divide, how can one
set the default margins between pads? This is done by adding two
parameters to Divide (), which are the margins in x and y:

root[] padl->Divide(3,2,0.1,0.1)

The margins are here set to 10% of the parent pad width.

Graphics and the Graphical User Interface December 2001 - version 3.1d 119

Updating the Pad

For performance reasons, a pad is not updated with every change. For
example, changing the coordinates of the pad does not automatically redraw
it. Instead, the pad has a "bit-modified" that triggers a redraw. This bit is
automatically set by:

1. Touching the pad with the mouse. For example resizing it with the
mouse.

Finishing the execution of a script.

Adding a new primitive or modifying some primitives for example the
name and title of an object.

You can also set the "bit-modified" explicitly with the Modified method:

// this pad has changed

root[] padl->Modified()

// recursively update all modified pads:
root[] cl->Update()

A subsequent call to TCanvas->Update () scans the list of sub-pads and
repaints the pads declared modified.

In compiled code or in a long macro, you may want to access an object
created during the paint process. To do so you can force the painting with a
TCanvas: :Update (). For example a TGraph creates a histogram (TH1) to
paint itself. In this case the internal histogram obtained with

TGraph: :GetHistogram () is created only after the pad is painted. The
pad is painted automatically after the script is finished executing or if you
force the painting with TPad: :Modified followed by a TCanvas: : Update.

Note that it is not necessary to call TPad: :Modified after a call to Draw () .
The "bit-modified" is set automatically by Draw () .

A note about the "bit-modified" in sub pads: when you want to update a sub
pad in your canvas, you need to call pad->Modified rather than canvas-
>Modified, and follow it with a canvas->Update. If you use canvas-
>Modified, followed by a call to canvas->Update, the sub pad has not
been declared modified and it will not be updated.

Also note that a call to pad->Update where pad is a sub pad of canvas,
calls canvas->Update and recursively updates all the pads on the canvas.

Making a Pad Transparent

As we will see in the paragraph "Fill attributes", a fill style (type of hatching)
may be set for a pad.

root[] padl->SetFillStyle(istyle)

This is done with the SetFil11Style method where istyle is a style
number, defined in "Fill attributes".

A special set of styles allows handling of various levels of transparency.
These are styles number 4000 to 4100, 4000 being fully transparent and
4100 fully opaque.

So, suppose you have an existing canvas with several pads. You create a
new pad (transparent) covering for example the entire canvas. Then you
draw your primitives in this pad.

The same can be achieved with the graphics editor.

120

December 2001 - version 3.1d Graphics and the Graphical User Interface

For example:

root
root

root
root
root
root

pad,0,0,1,1);

[l .x tutorials/hldraw.C

[] TPad *newpad=new TPad("newpad","a transparent
] newpad.SetFillStyle (4000) ;

] newpad.Draw () ;

] newpad.cd() ;

] // create some primitives, etc

[
[
[
[

Setting the Log Scale is a Pad Attribute

Setting the scale to logarithmic or linear is an attribute of the pad, not the axis
or the histogram. The scale is an attribute of the pad because you may want
to draw the same histogram in linear scale in one pad and in log scale in
another pad. Frequently, we see several histograms on top of each other in
the same pad. It would be very inconvenient to set the scale attribute for each
histogram in a pad. Furthermore, if the logic were in the histogram class (or
each object), one would have to test for the scale setting in each the Paint
methods of all objects.

If you have a pad with a histogram, a right-click on the pad, outside of the
histograms frame will convince you. The SetLogx (), SetLogy () and
SetLogz () methods are there. As you see, TPad defines log scale for the
two directions x and y plus z if you want to draw a 3D representation of some
function or histogram.

The way to set log scale in the x direction for the active pad is:

root

[] gPad->SetLogx (1)

To reset log in the z direction:

root

[] gPad->SetLogz (0)

If you have a divided pad, you need to set the scale on each of the sub-pads.
Setting it on the containing pad does not automatically propagate to the sub-
pads. Here is an example of how to set the log scale for the x-axis on a
canvas with four sub-pads:

root
root
root
root
root
root
root
root

TCanvas MyCanvas ("MyCanvas", "My Canvas")
MyCanvas->Divide (2,2)

MyCanvas->cd (1)

gPad->SetLogx ()

MyCanvas->cd (2)

gPad->SetLogx ()

MyCanvas->cd (3)

gPad->SetLogx ()

— e s e e
[U U VR

Graphical Objects

In this paragraph, we describe the various simple 2D graphical objects
defined in ROOT. Usually, one defines these objects with their constructor
and draws them with their Draw () method. Therefore, the examples will be
very brief. Most graphical objects have line and fill attributes (color, width)
that will be described in “Graphical objects attributes”.

Graphics and the Graphical User Interface December 2001 - version 3.1d 121

If the user wants more information, the class names are given and he may
refer to the online developer documentation. This is especially true for
functions and methods that set and get internal values of the objects
described here.

By default 2D graphical objects are created in User Coordinates with 0,0 in
the lower left corner.

Lines, Arrows, and Geometrical Objects

Line: Class TLine

The simplest graphical object is a line. It is implemented in the TLine class.
The constructor is:

TLine (Double t x1, Double t yl, Double t x2, Double t y2)

The arguments x1, y1, x2, y2 are the coordinates of the first and
second point.

This constructor may be used as in:

root [] 1 = new TLine(0.2,0.2,0.8,0.3)
root [] 1->Draw()

Arrows: Class TArrow

Different arrow formats as show in the picture below are available.

Examples of various arrow formats

Once an arrow is drawn on the screen, one can:

e click on one of the edges and move this edge.
e click on any other arrow part to move the entire arrow.

The constructor is:

TArrow (Double t x1, Double t yl,Double t x2, Double t y2,
Float t arrowsize, Option t *option)

It defines an arrow between points x1, y1 and x2, y2. The arrow size is in
percentage of the pad height.

122

December 2001 - version 3.1d Graphics and the Graphical User Interface

The options are the following:

option = ">"

option = "<"

option="|>" r

option="<|" 4

option = "<>"

option = "< |>" W

If FillColor == 0, draw open triangle else draw full triangle with fill color.

If ar is an arrow object, fill color is set with:

ar.SetFillColor (icolor);

Where icolor is the color defined in “Color and color palettes”.

The opening angle between the two sides of the arrow is 60 degrees. It can
be changed with ar->SetAngle (angle), where angle is expressed in
degrees.

Poly-line: Class TPolyLine

A poly-line is a set of joint segments. It is defined by a set of N points in a 2D
space. Its constructor is:

TPolyLine (Int_t n, Double t* x, Double t* y, Option t*
option)

Where n is the number of points, and x and y are arrays of n elements with
the coordinates of the points.

TPolyLine can be used by it self, but is also a base class for other objects,
such as curly arcs.

Circles, Ellipses: Class TEllipse

Ellipse is a general ellipse that can be truncated and rotated. An ellipse is
defined by its center (x1, y1) and two radii r1 and r2. A minimum and
maximum angle may be specified (phimin, phimax). The picture below
illustrates different types of ellipses:

Examples of Ellipses

Graphics and the Graphical User Interface December 2001 - version 3.1d 123

The Ellipse may be rotated with an angle theta.

The attributes of the outline line and of the fill area are described in
“Graphical objects attributes”

The constructor of a TE11ipse object is:

TEllipse (Double t x1, Double t yl,Double t rl,Double t
r2,Double_ t phimin, Double t phimax, Double t theta)

An ellipse may be created with a statement like:

root [] e = new TEllipse(0.2,0.2,0.8,0.3)
root [] e->Draw()

Rectangles: Classes TBox and TWbox

A rectangle is defined by the class TBox since it is a base class for many
different higher-level graphical primitives.

A box is defined by its bottom left coordinates x1, vy1 and its top right
coordinates x2, y2.

The constructor being:

TBox (Double t x1, Double t yl, Double t x2, Double t y2)

It may be used as in:

root [] b = new TBox(0.2,0.2,0.8,0.3)
root [] b->Draw()

A TWbox is a rectangle (TBox) with a border size and a border mode:

The attributes of the outline line and of the fill area are described in
“Graphical Objects Attributes”

124 December 2001 - version 3.1d Graphics and the Graphical User Interface

One Point, or Marker: Class TMarker

A marker is a point with a fancy shape! The possible markers are the
following:

® B AV O [IA O g ¥ &
20 21 22 23 24 25 26 27 28 29 30

+ x O X - - @

3 4 5 6 7 8 9 10 11

One marker is build via the constructor:

TMarker (Double t x, Double t y, Int t marker)

The parameters x and y are the coordinates of the marker and marker is the
type, shown above.

Suppose ma is a valid marker. One can set the size of the marker with
ma->SetMarkerSize (size), where size is the desired size. The
available sizes are:

Sizes smaller than 1 may be specified.

Set of Points: Class TPolyMarker

A TpolyMaker is defined by an array on N points in a 2-D space. At each
pointx[i], y[i] a markeris drawn. The list of marker types is shown in
the previous paragraph.

The marker attributes are managed by the class TAttMarker and are
described in “Graphical objects attributes”

The constructor for a TPolyMarker is:

TPolyMarker (Int_t n, Double t *x, Double t *y, Option t
*option)

Where x and y are arrays of coordinates for the n points that form the poly-
marker.
Curly and Wavy Lines for Feynman Diagrams

This is a peculiarity of particle physics, but we do need sometimes to draw
Feynman diagrams. Our friends working in banking can skip this part.

A set of classes implements curly or wavy poly-lines typically used to draw
Feynman diagrams. Amplitudes and wavelengths may be specified in the

Graphics and the Graphical User Interface December 2001 - version 3.1d 125

constructors, via commands or interactively from context menus. These
classes are TCurlyLine and TCurlyArc.

These classes make use of TPolyLine by inheritance; ExecuteEvent
methods are highly inspired from the methods used in TPolyLine and
TArc.

The picture below has been generated by the tutorial feynman. C:

e’ q

~

The constructors are:

TCurlyLine (Double t x1, Double t yl, Double t x2, Double t

y2, Double t wavelength, Double t amplitude)

With the starting point (x1, y1), end point (x2, y2).The wavelength and
amplitude are given in percent of the pad height

For TCurlyArc, the constructor is:

TCurlyArc (Double t x1, Double t yl, Double t rad, Double t
phimin, Double t phimax, Double t wavelength, Double t
amplitude)

The centeris (x1, y1) and the radius rad. The wavelength and amplitude
are given in percent of the line length, phimin and phimax, which are the
starting and ending angle of the arc, are given in degrees.

Refer to SROOTSYS/tutorials/feynman.C for the script that built the
picture above.

Text and Latex Mathematical Expressions

Text displayed in a pad may be embedded into boxes, called paves (such as
PaveLabels), or titles of graphs or many other objects but it can live a life of
its own. All text displayed in ROOT graphics is an object of class TText. For
a physicist, it will be most of the time a TLatex expression (which derives
from TText).

TLatex has been conceived to draw mathematical formulae or equations. Its
syntax is very similar to the Latex one in mathematical mode.

Subscripts and Superscripts

Subscripts and superscripts are made with the and ~ commands. These
commands can be combined to make complicated subscript and superscript
expressions. You may choose how to display subscripts and superscripts
using the 2 functions SetIndiceSize (Double t) and
SetLimitIndiceSize (Int t).

126

December 2001 - version 3.1d Graphics and the Graphical User Interface

Examples of what can be obtained using subscripts and superscripts:

The expression Gives The expression | Gives The expression Gives
x* {2y} x2 x*{y~{2}} xy2 x*{y}_{1} x;
x_{2y} X, x*{y_{1}} X x_{1}"*{y} X

Fractions

Fractions denoted by the / symbol are made in the obvious way. The #frac
command is used for large fractions in displayed formula; it has two
arguments: the numerator and the denominator. For example, this equation is
obtained by following expression.

x=y-|;z/2
y 41

x=#frac{y+z/2}{y"{2}+1}

Roots

The #sqgrt command produces the square ROOT of its argument; it has an
optional first argument for other roots.

Example: #sqrt{10} #sqrtl[3]1{10} g W

Delimiters

You can produce three kinds of proportional delimiters.

#[1{....} or"ala" Latex #leftl..... #right]: big square
brackets

#{}{....} or #left{..... #right}: big curly brackets
#11{....} or #left|..... #right |: big absolute value symbol
#(O){....} orfleft(..... #right): big parenthesis

Greek Letters

The command to produce a lowercase Greek letter is obtained by adding a #
to the name of the letter. For an uppercase Greek letter, just capitalize the
first letter of the command name.

#alpha #beta #gamma #delta #epsilon #zeta #eta #theta #iota
fkappa #lambda #mu #nu #xi #omicron #pi #varpi #rho #sigma
#tau #upsilon #phi #varphi #chi #psi #omega #Gamma #Delta
#Theta #Lambda #Xi #Pi #Sigma #Upsilon #Phi #Psi #Omega

Changing Style in Math Mode
You can change the font and the text color at any moment using:

#font [font-number]{...} and #color[color—-number]{...}

Graphics and the Graphical User Interface December 2001 - version 3.1d 127

Mathematical Symbols

TLatex can make mathematical and other symbols. A few of them, such as
+ and >, are produced by typing the corresponding keyboard character.
Others are obtained with the commands in the following table.

< #leq /o #l

% #club * #diamond

<> #leftrightarrow<— #leftarrow

| #downarrow ° #circ

= #geq x #times

* #bullet + #divide

~ #approx - #3dots

< #downleftarrow? #aleph

@ #odot ® #otimes

™ #cap Y #cup

@ #notsubset < #subset

€ #notin Z #angle

© #ocopyright ™ #trademark
#upoint — #corner

< #Leftrightarrow— #Leftarrow

U #Downarrow * #diamond
© #copyright ™ #void3

| #bar \ #arcbottom
| #bottombar [#arcbar

I #parallel 1 #perp

#infty
#heart
#uparrow

H — <€ 8

#pm
#propto
#neq
#cbar
#Jgothic
#oplus
#supset
#subseteq
#nabla
#prod
#wedge
#Uparrow
{ #LT
Z#sum

— #topbar
{ #itbar

) #GT

=>4 9N U @ ta — # 38

Accents, Arrows and Bars

Vv #GT

4 j#spade

— #rightarrow
" #doublequote
@ #partial

= #equiv

— #topbar

R #Rgothic

@ #oslash

= #supseteq
#in

#oright
#surd

v #vee

= #Rightarrow
0 #Box

52 #voidn

< @ m

(. #arctop
#int
f #voidb

Symbols in a formula are sometimes placed one above another. TLatex
provides special commands for doing this.

#hat{a} =hat

#check = inverted hat
facute = acute

#grave = accent grave

#dot = derivative

#ddot = double derivative
a Is obtained with #bar{a}

Is obtained with #vec{a}

128

December 2001 - version 3.1d

Graphics and the Graphical User Interface

Example 1

The following script (SROOTSYS/tutorials/latex.C)

gROOT->Reset () ;
TCanvas cl("cl","Latex",600,700);
TLatex 1;
1.SetTextAlign (12);
1.SetTextSize (0.04);
1.DrawLatex(0.1,0.8,"1) C(x) = d #sqrt{#frac{2}{#lambdaD}}
#int~{x} {O}cos (#frac{#pi}{2}t"{2})dt");
1.DrawLatex (0.1,0.6,"2) C(x) = d #sqrt{#frac{2}{#lambdaD}}
#int"{x}cos (#frac{#pilt {2}t~ {2})dLt");
1.DrawLatex(0.1,0.4,"3) R = |A|"{2} =
#ffrac{1} {2} (#[]{#frac{l}{2}+C(V)}"{2}+
#[] {(#frac{l}{2}+S(V) I~ {2})"™);
1.DrawlLatex (0.1,0.2,"4) F(t) = #sum {i=
—#infty} " {#infty}A (i) cos#[] {#frac{i}{t+i}}");

The script makes this picture:

¥ test =1 3
File Edit Miew Optiohs Inspect Classes Help

1) Cy=d \I% ‘[cos(zﬂlz)dt

2) C=d \I% Tcos(zﬂﬁ)dt
3) R- i’ - L{Lcw]'«[Lsm])

4 Fp) = f‘_ Afijcos [t_l.]

Graphics and the Graphical User Interface December 2001 - version 3.1d 129

Example 2

The following script (SROOTSYS/tutorials/latex2.C):

gROOT->Reset () ;
TCanvas cl("cl","Latex",600,700);
TLatex 1;
1.SetTextAlign (23);
1.SetTextSize (0.1);
1.DrawLatex (0.5,0.95,"e"{+}e"{-}#rightarrowz" {0}
#frightarrowI#bar{I}, g#bar{g}™);
1.DrawLatex (0.5,0.75," |#vec{al}#bullet#vec{b}|=
#Sigmaa~{i} {jk}+b~{bj} {i}"):;
1.DrawLatex(0.5,0.5, "1 (#partial {#mu}#bar{#psi}#gamma” {#mu}
+m#bar{#psi}=0
#Leftrightarrow (#Box+m™{2}) #psi=0") ;
1l.DrawlLatex(0.5,0.3,"L {em}=eJ"{#mu} {em}A {#mu} ,
J*{#mu} {em}=#bar{I}#gamma {#mu}l
M~{j} {i}=#SigmaA {#alpha}#tau”{#alphaj} {i}");

The result is the following picture:

24 (=] E3
File Edit Yiew Options Inspect Classes Help

ere—7Z°>ll, qq
[3ebl-2a, +b?

i(8ﬁv“+mﬁ=0<=)(n+m2)w=0
Lom=edonA, Jon=ly |, MI=ZA, 10

em" ‘|1 ?

130 December 2001 - version 3.1d Graphics and the Graphical User Interface

Example 3

The following script (SROOTSYS/tutorials/latex3.C):

gROOT->Reset () ;

TCanvas cl("cl1l");

TPaveText pt(.1,.5,.9,.9);

pt.AddText ("#frac{2s} {#pitalpha”{2}}
#frac{d#sigma}{dcos#theta}l (e*{+}e”{-}
#rightarrow f#bar{f}) = ");

pt.AddText ("#left| #frac{l}{1l - #Delta#alpha} #right|"{2}
(l+cos™{2}#theta");

pt.AddText ("+ 4 Re #left{ #frac{2}{1 - #Delta#alpha} #chi (s)
#[]{#hat{g} {#nu}~{el#hat{g} {#nu}"{f}
(1 + cos”{2}#theta) + 2 #hat{g} {a}l"{e}
#hat{g} {a}"{f} cos#theta) } #right}");

pt.SetLabel ("Born equation");

pt.Draw () ;

}

The result is the following picture:

! Born equation I

25 _dS e G| _1 P 2
(e'e — ff |1_—M|(1+cosﬁ]

mr2 deost

—p~f et
- F{e{ 1 -2.&05 x(s) [QVQVH + cos ©) +24.g, cost)] }

+ 16l P [@E + 5‘32](o+ +c0526]+ ¢ 5 5.5 o cose]

Graphics and the Graphical User Interface December 2001 - version 3.1d 131

Text in Labels and TPaves

Text displayed in a pad may be embedded into boxes, called paves, or may
be drawn alone. In any case, it is recommended to use a Latex expression,
which is covered in the previous paragraph. Using TLatex is valid whether
the text is embedded or not. In fact, you will use Latex expressions without

knowing it since it is the standard for all the embedded text.

A pave is just a box with a border size and a shadow option. The options
common to all types of paves and used when building those objects, are the
following:

Option = "T" Top frame

Option = "B" Bottom frame

Option = "R" Right frame

Option = "L" Left frame

Option = "NDC" x1, y1,x2, y2 are given in NDC
Option = "ARC" corners are rounded

We will see the practical use of these options in the description of the more
functional objects like TPaveLabels.

There are several categories of paves containing text:

TPavelLabels

TPaveLabels are panels containing one line of text. They are used for
labeling. The constructor is:

TPaveLabel (Double t x1, Double t yl,Double t x2, Double t
y2, const char *label, Option t *option)

Where (x1, yl) are the coordinates of the bottom left corner, (x2, y2)
the coordinates of the upper right corner. “1abel” is the text to be displayed
and “option” is the drawing option, described above. By default, the border
size is 5 and the option is “br”.

If one wants to set the border size to some other value, one may use the
SetBorderSize () method. For example, suppose we have a histogram,
which limits are (-100, 100) in the x directionand (0,1000) inthey
direction.

The following lines will draw a label in the center of the histogram, with no
border. If one wants the label position to be independent of the histogram
coordinates, or user coordinates, one can use the option “NDC”. See the
paragraph about coordinate systems for more information.

root[] pl = new TPavelLabel (-50, 0, 50,200,”Some text”)
root[] pl->SetBorderSize (0)
root[] pl->Draw()

132 December 2001 - version 3.1d Graphics and the Graphical User Interface

Here are examples of what may be obtained:

This is a Pavelabel with option TL This is a PavelLabel with option TR

This is a Pavelabel with option BL This is a Pavel abel with option BR

TPaveText

A TPaveLabel can contain only one line of text. A TPaveText may contain
several lines. This is the only difference. This picture illustrates and explains
some of the points of TPaveText. Once a TPaveText is drawn, a line can
be added or removed by brining up the context menu with the mouse.

File Edit WYiew Options Inspector Classes Help

A PaveText is a Pave with text lines andfor hoxes
The Position of the text may be automatic
Text/Line/Box attributes may be set for individual elements

The PaveText below has heen created automatically
by reading the macro file with the statements 0
used to generate this PaveText \N\th F.O

pave Fo°

TPaveText pt1{0.015,0.66,0.98,0.98)

TPaveText pt2{0.09,0.015,0.91,0.63)

pt2 SetFillColor{28)

TText “t1=pt1.AddText({"A PaveText i3 a Pave with text lines and/or boxes")
TText “t2=pt1.AddText{"The Position of the text may be automatic"y

TText “t3=pt1.AddText({"TextLine/Box attributes may be set for individual elements "y
t3 . SelTextColon(2)

TText “t30=pt1.AddText{" "}

TLine “M=pt1.AddLine{0,0,0,0)

1. SetLineColon4)

I SetLineWidth{6)

TText “t4=pt1.AddText{"The PaveText below has been created automatically "y
TText “th=pi1.AddText({"by reading the macro File with the statements")

TText “to=pt1.AddText({"used to generate thiz PaveText")

TText “t7=pt1.AddText{"Have Fun with ROOT")

17 SetTextColon(6)

t¥ SetTextAngle(12)

{7 SetTextAlign{22)

t7 SetTextSize(0.05)

ptl.Draw

pt2 BeadFile{pavet mac)

pt2 Draw

Graphics and the Graphical User Interface December 2001 - version 3.1d 133

TPavesText

A TPavesText is a stack of text panels (see TPaveText). One can set the
number of stacked panels at building time. The constructor is:

TPavesText (Double t x1, Double t yl, Double t x2, Double t
Int t npaves, Option_ t* option)

By default, the number of stacked panels is 5 and option = “br”

C++ header files

*User.h

Sliders

Sliders may be used for showing the evolution of a process or setting the
limits of an object’s value interactively. A TS1ider object contains a slider
box that can be moved or resized.

Slider drawing options include the possibility to change the slider starting and
ending positions or only one of them.

The current slider position can be retrieved via the functions
TSlider: :GetMinimum () and TSlider: :GetMaximum () . These two
functions return numbers in the range [0, 1].

One may set a C expression to be executed when the mouse button 1 is
released. This is done with the TS1ider: :SetMethod () function.

It is also possible to reference an object. If no method or C expression has
been set, and an object is referenced (SetObject has been called), while
the slider is being moved/resized, the object ExecuteEvent function is
called.

134

December 2001 - version 3.1d Graphics and the Graphical User Interface

Let’'s see an example using SetMethod. The script is called xyslider.C.
You can find this script in SROOTSYS/tutorials.

// Example of script featuring two sliders

TFile *f = new TFile("hsimple.root");

TH2F *hpxpy (TH2F*) £->Get ("hpxpy") ;

TCanvas *cl = new TCanvas("cl");

TPad *pad = new TPad("pad","lego pad",
0.1,0.1,0.98,0.98);

pad->SetFillColor (33);

pad->Draw () ;

pad->cd () ;

gStyle->SetFrameFillColor (42);

hpxpy->SetFillColor (46) ;

hpxpy->Draw ("legol") ;

cl->cd();

// Create two sliders in main canvas. When buttonl
// of the mouse will be released, action.C will be called
TSlider *xslider = new TSlider
("xslidexr","x",.1,.02,.98,.08);
xslider->SetMethod (".x action.C");
TSlider *yslider = new TSlider
("yslider™,"y",.02,.1,.06,.98);
yslider->SetMethod (".x action.C");

The script that is executed when button 1 is released is the following (script
action.C):

’

Int t nx = hpxpy->GetXaxis ()->GetNbins () ;
Int t ny = hpxpy->GetYaxis ()->GetNbins()
()
)

’

Int t binxmin = nx*xslider->GetMinimum
Int t binxmax = nx*xslider->GetMaximum (
hpxpy->GetXaxis () ->SetRange (binxmin, binxmax) ;
Int t binymin = ny*yslider->GetMinimum/() ;
Int t binymax = ny*yslider->GetMaximum() ;
hpxpy->GetYaxis () ->SetRange (binymin, binymax) ;
pad->cd () ;

hpxpy->Draw ("legol") ;

cl->Update () ;

’

The canvas and the sliders created in the above script are shown in the
picture below.

Graphics and the Graphical User Interface December 2001 - version 3.1d 135

File Edit View Options Inspect Classes Help

The second example uses SetObject (script xyslider.C). Same
example as above but using the SetMethod:

Myclass *obj = new Myclass();
// Myclass derived from TObject

xslider->SetObject (obj) ;
yslider->SetObject (obj) ;

When one of the sliders will be changed, Myclass: :ExecuteEvent () will
be called with px=0 and py = 0.

AXx

The axis objects are automatically built by various high level objects such as
histograms or graphs. Once build, one may access them and change their
characteristics. It is also possible, for some particular purposes to build axis
on their own. This may be useful for example in the case one wants to draw
two axis for the same plot, one on the left and one on the right.

For historical reasons, there are two classes representing axis.

TAxis is the axis object, which will be returned when calling the
TH1::GetAxis () method

TAxis

*axis = histo->GetXaxis|()

Of course, you may do the same for Y and z-axis.

The graphical representation of an axis is done with the TGaxi s class.
Instances of this class are generated by the histogram classes and TGraph.
This is internal and the user should not have to see it.

136

December 2001 - version 3.1d Graphics and the Graphical User Interface

Axis Options and Characteristics

The axis options are most simply set with the styles. The available style
options controlling specific axis options are the following:

SetAxisColor (Color t color = 1, Option t* axis = X)
SetLabelColor (Color t color = 1, Option t* axis = X)
SetLabelFont (Style t font = 62, Option t* axis = X)
SetLabelOffset (Float t offset = 0.005, Option t* axis = X)
SetLabelSize (Float t size = 0.04, Option t* axis = X)
SetNdivisions (Int t n = 510, Option t* axis = X)

SetTickLength (Float t length = 0.03, Option t* axis = X)
SetTitleOffset (Float t offset = 1, Option t* axis = X)
SetTitleSize (Float t size = 0.02, Option_ t* axis = X)

As one can see, the default is always for x-axis. As an example, if one wants
the label size of all subsequent Y-axis to be 0.07, one may do:

gStyle->SetLabelSize (0.07,"Y");

Of course, getters corresponding to the described setters are available.
Furthermore, the general options, not specific to axis, as for instance
SetTitleTextColor () are valid and do have an effect on axis
characteristics

Axis Title

The axis title is set, as with all named objects, by

axis->SetTitle ("Whatever title you want");

When the axis is embedded into a histogram or a graph, one has to first
extract the axis object:

h->GetXaxis () ->SetTitle ("Whatever title you want")

Drawing Axis independently of Graphs or
Histograms

An axis may be drawn independently of a histogram or a graph. This may be
useful to draw for example a supplementary axis for a graph. In this case,
one has to use the TGaxis class, the graphical representation of an axis.
One may use the standard constructor for this kind of objects:

TGaxis (Double t xmin, Double t ymin, Double t xmax,
Double t ymax, Double t wmin, Double t wmax, Int t ndiv =
510, Option_ t* chopt, Double t gridlength = 0)

The arguments xmin, ymin are the coordinates of the axis' start in the user
coordinates system, and xmax, ymax are the end coordinates. The
arguments wmin and wmax are the minimum (at the start) and maximum (at
the end) values to be represented on the axis.

Graphics and the Graphical User Interface December 2001 - version 3.1d 137

ndiv is the number of divisions and should be set to:
ndiv = N1 + 100*N2 + 10000*N3
N1 = number of first divisions.
N2 = number of secondary divisions.
N3 = number of tertiary divisions.
For example:
ndiv = 0: no tick marks.
ndiv = 2:2 divisions, one tick mark in the middle of the axis.

The options, given by the “chopt” string are the following:

'G': logarithmic scale, default is linear.
'B': Blank axis. Useful to superpose the axis.

e chopt

e chopt

Instead of the wmin, wmax arguments of the normal constructor, i.e. the limits
of the axis, the name of a TF1 function can be specified. This function will be
used to map the user coordinates to the axis values and ticks. The
constructor is the following:

TGaxis (Double t xmin, Double t ymin, Double t xmax,
Double t ymax, const char* funcname, Int t ndiv = 510,
Option t* chopt, Double t gridlength = 0)

In such a way, it is possible to obtain exponential evolution of the tick marks
position, or even decreasing. In fact, anything you like.

Orientation of tick marks on axis.

Tick marks are normally drawn on the positive side of the axis, however,
if xmin = xmax, then negative.

e chopt = '+':tick marks are drawn on Positive side. (Default)

e chopt = '-': tick marks are drawn on the negative side. i.e.: '+-"' --
> tick marks are drawn on both sides of the axis.

e chopt = 'U': Unlabeled axis, default is labeled.

Label Position

Labels are normally drawn on side opposite to tick marks. However,
chopt = '=':on Equal side

Label Orientation

Labels are normally drawn parallel to the axis. However, if xmin =
xmax, then they are drawn orthogonal, and if ymin = ymax they are
drawn parallel.

138 December 2001 - version 3.1d Graphics and the Graphical User Interface

Tick Mark Label Position

Labels are centered on tick marks. However, if xmin = xmax, then they are

right adjusted.

e chopt = 'R': labels are Right adjusted on tick mark (default is
centered)

e chopt = 'L': labels are left adjusted on tick mark.

e chopt = 'C': labels are centered on tick mark.

e chopt = 'M': Inthe Middle of the divisions.

Label Formatting

Blank characters are stripped, and then the label is correctly aligned. The dot,
if last character of the string, is also stripped. In the following, we have some
parameters, like tick marks length and characters height (in percentage of the
length of the axis, in user coordinates)

The default values are as follows:

Primary tick marks: 3.0 %
Secondary tick marks: 1.5 %
Third order tick marks: .75 %
Characters height for labels: 4%
Labels offset: 1.0 %

Optional Grid

chopt = '"W': cross-Wire

Axis Binning Optimization

By default, the axis binning is optimized.

'N' : No binning optimization
'I': Integer labeling

e chopt

e chopt

Time Format

Axis labels may be considered as times, plotted in a defined time format. The
format is set with SetTimeFormat () .

chopt = 't': Plottimes with a defined format instead of values

The format string for date and time use the same options as the one used in
the standard strftime C function.

Graphics and the Graphical User Interface December 2001 - version 3.1d 139

For the date:

e %a abbreviated weekday name
e Db abbreviated month name

e 3dday of the month (01-31)

e smmonth (01-12)

e %y year without century

For the time:

. $H hour (24-hour clock)

. %1 hour (12-hour clock)

. %p local equivalent of AM or PM
. $M minute (00-59)

. %S seconds (00-61)

o %% %

The start time of the axis will be wmin + time offset. Thistime

offset is the same for all axes, since it is gathered from the active
style. One may set the time offset:

gStyle->SetTimeOffset (time)

Where “time” is the offset time expressed in UTC (Universal
Coordinated Time) and is the number of seconds since a standard
date (1970), adjusted for some earth’s rotation drifting. Your
computer time is using UTC as a reference.

140 December 2001 - version 3.1d Graphics and the Graphical User Interface

Axis Example 1:

To illustrate all what was said before, we can show two scripts. This example

creates this picture:

3_— - —0
6E - 100_200 300 400 §00 600 700 800 900 1o
4 10° —52
L = —330
2 C 1 1 L_n nromed 1 | ol 3
3 L 10° 107 107 1 10 10° 10° —40
0 10 & :
L = —50
_2__ C I T T A S N A R RRTN B
- L 6 4 2 0 2 4 6 8 —e0
-4_— 10 g— _:70
6 C fsspmn s sn] - Zg0
. = 1.2 1.22 1.24 1.26 1.28 13 1.32 E
8 1 —=90

This script goes along with it::

9000

8000

7000

6000

5000

4000

3000

2000

1000

gROOT->Reset () ;

cl->Range (-10,-1,10,1);

axisl->SetName ("axisl") ;

axisl->Draw () ;

TGaxis *axis2 = new TGaxis(4.5,0.2,5.5,0.2,

0.001,10000,510,"G");

cl = new TCanvas("cl","Examples of Gaxis",10,10,700,500);

TGaxis *axisl = new TGaxis(-4.5,-0.2,5.5,-0.2,-6,8,510,"");

... the script is continued on the next page

Graphics and the Graphical User Interface

December 2001 - version 3.1d

141

axis2->SetName ("axis2");
axis2->Draw () ;

TGaxis *axis3 = new TGaxis(-9,-0.8,-9,0.8,-8,8,50510,"");
axis3->SetName ("axis3") ;
axis3->Draw () ;

TGaxis *axis4 = new TGaxis(-7,-0.8,7,0.8,1,10000,50510,"G");
axis4->SetName ("axis4");

axis4->Draw () ;TGaxis *axis5 = new TGaxis(-4.5,-.6,5.5,-
.6,1.2,1.32,80506,"-+");

axisb5->SetName ("axisb") ;

axis5->SetLabelSize (0.03);

axisb->SetTextFont (72) ;

axisb5->SetLabelOffset (0.025) ;

axis5->Draw () ;

TGaxis *axis6 = new TGaxis(-4.5,0.6,5.5,0.06,
100,900,50510,"=-");

axiso->SetName ("axiso") ;

axis6->Draw () ;

TGaxis *axis7 = new TGaxis(8,-0.8,8,0.8,0,9000,50510,"+L") ;
axis7->SetName ("axis7") ;

axis7->SetLabelOffset (0.01);

axis7->Draw () ;

// one can make axis top->bottom. However because of a

// problem, the two x values should not be equal

TGaxis *axis8 = new TGaxis(6.5,0.8,6.499,-0.8,
0,90,50510,"=");

axis8->SetName ("axis8") ;

axis8->Draw () ;

}

Axis Example 2:

The second example shows the use of the second form of the constructor,
with axis ticks position determined by a function TF1:

Axes axis with decreasing values

210 8 6 4 2 0 -2 4 6 8 -10
_I T T | T T T | T T T | T T T | T T T | T T T | T T T | T T T | T T T | T LI
15—
1:_ ol b by b b b v 0 by 1y 1 |
= 0020406 08 1 1.2 1.4 1.6 1.8 2
- exponential axis
05—
- 2
o £mE
C o J0E
- ‘E 200F
0.5 £ C
C @
E =2
1= 2
15
_2:IIII|IIIBIIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII
0 1 2 3 4 5 6 7 8 9 10

142 December 2001 - version 3.1d Graphics and the Graphical User Interface

{

void gaxis3al()

gStyle->SetOptStat (0) ;

TH2F *h2 = new TH2F("h","Axes",2,0,10,2,-2,2);
h2->Draw () ;

TF1 *fl=new TF1("f1","-x",-10,10);

TGaxis *Al = new TGaxis(0,2,10,2,"f1",510,"-");

Al->SetTitle("axis with decreasing wvalues");
Al->Draw () ;

TF1 *f2=new TF1("f2","exp(x)",0,2);
TGaxis *A2 = new TGaxis(1l,1,9,1,"f2");
A2->SetTitle ("exponential axis");
A2->SetLabelSize (0.03);
A2->SetTitleSize (0.03);
A2->SetTitleOffset (1.2);

A2->Draw () ;

TF1 *f3=new TF1("£3","loglO(x)",0,800);
TGaxis *A3 = new TGaxis(2,-2,2,0,"£f3",505);
A3->SetTitle ("logarithmic axis");
A3->SetLabelSize (0.03);

A3->SetTitleSize (0.03);
A3->SetTitleOffset (1.2);

A3->Draw () ;

Graphical Objects Attributes

Text Attributes

When a class contains text or derives from a text class, it needs to be able to
set text attributes like font type, size, and color. To do so, the class inherits

from the TAttText class (a secondary inheritance), which defines text

attributes. TLatex and TText inherit from TAttText.

Setting Text Attributes Interactively

When clicking on an object containing text, one of the last items in the
context menu is SetTextAttributes. Selecting it makes the following

window appear:

Graphics and the Graphical User Interface

December 2001 - version 3.1d

143

This canvas allows you to set:

e [TTININIR
=== AN [T
=l ninpnrr
il | [IlIlloBsBar
[N AR

courier- hold-r-normal

courier-medium-o-nonmal

helvetica-medium-o-nonmal

helvetica-medium-r-normal

times-hold-i-normal

times -bold-r-nomal

times-medium-i-nomal

The text alignment Font Color Size

Setting Text Alignment

Text alignment may also be set by a method call. What is said here applies to
all objects deriving from TAttText, and there are many. We will take an
example that may be transposed to other types. Suppose "1a" is a TLatex
object. The alignment is set with:

root []

la->SetTextAlign (align)

The parameter align is a short describing the alignment:
align = 10*HorizontalAlign + VerticalAlign

For Horizontal alignment the following convention applies:

o 1 =left
e 2 =centered
e 3 =right

For Vertical alignment the following convention applies:

e 1 =bottom
e 2 =centered
e 3=top

For example

Align: 11 = left adjusted and bottom adjusted
Align: 32 = right adjusted and vertically centered

Setting Text Angle

Use TAttText: :SetTextAngle to set the text angle. The angle is the
degrees of the horizontal.

root []

la->SetTextAngle (angle)

Setting Text Color

Use TAttText: :SetTextCoor to set the text color. The color is the color
index. The colors are described in "Color and color palettes".

144

December 2001 - version 3.1d Graphics and the Graphical User Interface

root[] la->SetTextColor (color)

Setting Text Font

Use TAttText::SetTextFont to set the font. The parameter font is the
font code, combining the font and precision:

font = 10 * fontID + precision

root[] la->SetTextFont (font)

The table below lists the available fonts. The font IDs must be between 1 and
14.

The precision can be:

e Precision = 0 fast hardware fonts (steps in the size)
e Precision = 1 scalable and rotate-able hardware fonts (see below)
e Precision = 2 scalable and rotate-able hardware fonts

When precision 0 is used, only the original non-scaled system fonts are used.
The fonts have a minimum (4) and maximum (37) size in pixels. These fonts
are fast and are of good quality. Their size varies with large steps and they
cannot be rotated.

Precision 1 and 2 fonts have a different behavior depending if True Type
Fonts (TTF) are used or not. If TTF are used, you always get very good
quality scalable and rotate-able fonts. However, TTF are slow.

Precision 1 and 2 fonts have a different behavior for PostScript in case of
TLatex objects:

e With precision 1, the PostScript text uses the old convention (see
TPostScript) for some special characters to draw sub and
superscripts or Greek text.

o With precision 2, the "PostScript" special characters are drawn as such.
To draw sub and superscripts it is highly recommended to use TLatex
objects instead.

For example: font = 62 is the font with ID 6 and precision 2

Graphics and the Graphical User Interface December 2001 - version 3.1d 145

The available fonts are:

Font ID XI11 True Type name is italic| "boldness"

1 times-medium-i-normal | "Times New Roman" Yes 4

2 times-bold-r-normal "Times New Roman" No 7

3 times-bold-i-normal "Times New Roman" Yes 7

4 helvetica-medium-r- "Arial" No 4
normal

5 helvetica-medium-o- "Arial" Yes 4
normal

6 helvetica-bold-r-normal "Arial" No 7

7 helvetica-bold-o-normal "Arial" Yes 7

8 courier-medium-r-normal "Courier New" No 4

9 courier-medium-o- "Courier New" Yes 4
normal

10 courier-bold-r-normal "Courier New" No 7

11 courier-bold-o-normal "Courier New" Yes 7

12 symbol-medium-r- "Symbol" No 6
normal

13 times-medium-r-normal | "Times New Roman" No

14 "Wingdings" No 4

Here is an example of what the fonts look like:

ID1: The quick brown fox is not here anymore

ID2: The quick brown fox is not here anymore

ID3: The quick brown fox is not here anymore

ID4: The quick brown fox is not here anymore

ID5: The quick brown fox is not here anymore

ID6: The quick brown fox is not here anymore

ID7: The quick brown fox is not here anymore

ID8: The quick brown fox is not here anymore

ID9: 7The quick brown fox is not here anymore

ID10: The quick brown fox is not here anymore

ID11: The quick brown fox is not here anymore

ID 12 ;. Tne buiyk Ppowv Po& 10 vOT MeEPE AV LOpE

ID 13 : The quick brown fox is not here anymore

ID 14 : The quick brown fox is not here anymore

146

December 2001 - version 3.1d

Graphics and the Graphical User Interface

This script makes the image of the different fonts:

tex
for

tc = new TCanvas ("textc", "Example of text",1);
(int 1=1;1i<15;1i++) {

cid = new char([8];

sprintf (cid,"ID %d :",1);

cid[7] = 0;

1id = new TLatex (0.1,1-(double)i/15,cid);
lid->SetTextFont (62) ;
lid->Draw () ;
1 = new TLatex(.2,1-(double)i/15,

"The quick brown fox is not here anymore");
1->SetTextFont (1*10+2) ;
1->Draw () ;

How to use True Type Fonts

You can activate the True Type Fonts by adding the following line in your

.rootrc file.

Unix.*

.Root.UseTTFonts: true

You can check that you indeed use the TTF in your Root session. When the

TTF is active, you get the following message at the start of a session:
"Free Type Engine v1.x used to render TrueType fonts."

You can also check with the command:

gEnv->Print ()

Setting Text Size

Use TAttText::SetTextSize to set the text size.

root []

la->SetTextSize (size)

The size is the text size expressed in percentage of the current pad size.

The text size in pixels will be:

e |If current pad is horizontal, the size in pixels
textsize * canvas_height

e If current pad is vertical, the size in pixels
textsize * canvas_width

Graphics and the Graphical User Interface December 2001 - version 3.1d

147

Line Attributes

All classes manipulating lines have to deal with line attributes. This is done by
using secondary inheritance of the class TAttLine.

Setting Line Attributes Interactively

When clicking on an object being a line or having some line attributes, one of
the last items in the context menu is SetLineAttributes. Selecting it
makes the following window appear:

% attline: 1

W] | |
| | N N NN N

The line color Style Width

Setting Line Color

Line color may be set by a method call. What is said here applies to all
objects deriving from TAttLine, and there are many (histograms, plots). We
will take an example that may be transposed to other types. Suppose "11" is
a TLine object. The line color is set with:

root[] li->SetLineColor (color)

The argument color is a color number. The colors are described in "Color
and Color Palettes”

Setting Line Style

Line style may be set by a method call. What is said here applies to all
objects deriving from TAttLine, and there are many (histograms, plots). We
will take an example that may be transposed to other types. Suppose "11" is
a TLine object. The line style is set with:

root[] li->SetLineStyle(style)

The argument style is one of:

l=so0lid, 2=dash, 3=dash-dot, 4=dot-dot

148 December 2001 - version 3.1d Graphics and the Graphical User Interface

Setting Line Width

Line width may be set by a method call. What is said here applies to all
objects deriving from TAttLine, and there are many (histograms, plots). We
will take an example that may be transposed to other types. Suppose "11" is
a TLine object. The line width is set with:

root[] li->SetLineWidth (width)

The width is the width expressed in pixel units.

Fill Attributes

Almost all graphics classes have a fill area somewhere. These classes have
to deal with fill attributes. This is done by using secondary inheritance of the
class TAttFill.

Setting Fill Attributes interactively

When clicking on an object having a fill area, one of the last items in the
context menu is SetFillAttributes. Selecting it makes the following
window appear:

P attfill: i1

ERENET =
|

FH T THTH
O,
o,
=,

iEEEE

The fill color Style

Setting Fill Color

Fill color may be set by a method call. What is said here applies to all objects
deriving from TAttFil1, and there are many (histograms, plots). We will
take an example that may be transposed to other types. Suppose "h" is a
TH1F (1 dim histogram) object. The histogram fill color is set with:

root[] h->SetFillColor (color)

The color is a color number. The colors are described in "Color and color
palettes”

Graphics and the Graphical User Interface December 2001 - version 3.1d 149

Setting Fill Style

Fill style may be set by a method call. What is said here applies to all objects
deriving from TAttFil1l, and there are many (histograms, plots). We will
take an example that may be transposed to other types. Suppose "h" is a
TH1F (1 dim histogram) object. The histogram fill style is set with:

root []

h->SetFillStyle(style)

The convention for style is:
0: hollow
1001: solid
2001 : hatch style
3000 + pattern number: patterns

4000 to 4100: transparency, 4000 = fully transparent, 4100 = fully
opaque.

The various patterns are represented here:

| Fill styles

3001 3002 3003 3004 3005

— e
————— Ly
b
ety ety
e — atetatet
_——————————— a5

3006 3007 3008

ey

t"&t

: ; I
Jlioldliolololololl OOCOODONCLO00 e
i T e T TeTeTe :&%‘3‘:‘3‘:‘:’:&&&3
.. OUOOHO000000T XS

3011 3012 3013 3014 3015

el

3016 3017 3018 3019 3020

Color and Color Palettes

At initialization time, a table of basic colors is generated when the first
Canvas constructor is called. This table is a linked list, which can be
accessed from the gROOT object (see TROOT: :GetListOfColors ()).

Each color has an index and when a basic color is defined, two "companion”
colors are defined:

- The dark version (color index + 100)

- The bright version (color index + 150)

The dark and bright colors are used to give 3-D effects when drawing various
boxes (see TWbox, TPave, TPaveText, TPavelLabel, etc).

150

December 2001 - version 3.1d Graphics and the Graphical User Interface

If you have a black and white copy of the manual, here are the basic colors
and their indices:

1 = black

2 =red

3 = bright green
4 = bright blue
5 = yellow

6 = hot pink

7 =aqua

8 = green

9 = blue

0 ->9: basic colors

10 -> 19: shades of gray
20 -> 29: shades of brown
30 -> 39: shades of blue
40 -> 49: shades of red

The list of currently supported basic colors (here dark and bright colors are
not shown) is shown in the picture below:

The color numbers specified in the basic palette, and the picture above, can
be viewed by selecting the item "Colors" in the "view" menu of the canvas
toolbar.

Other colors may be defined by the user. To do this, one has to build a new
object of type TColor, which constructor is:

TColor (Int t color, Float t r, Float t g, Float t b, const
char* name)

One has to give the color number and the three Red, Green, Blue values,
each being defined from 0 (min) to 1(max). An optional name may be given.
When built, this color is automatically added to the existing list of colors.

If the color number already exists, one has to extract it from the list and
redefine the R, G, B values. This may be done for example with:

root[] color = (TColor*) (gROOT->GetListOfColors() -
>At (index color))
root[] color->SetRGB(r,g,b)

Where r, g and b go from 0 to 1 and index color is the color number you
wish to change.

Graphics and the Graphical User Interface December 2001 - version 3.1d 151

Color Palette (for Histograms)

Defining one color at a time may be tedious. The color palette is used by the
histogram classes (see Draw Options). For example, TH1::Draw ("col")
draws a 2-D histogram with cells represented by a box filled with a color CI
function of the cell content. If the cell content is N, the color CT used will be
the color number in colors [N]. If the maximum cell contentis > ncolors,
all cell contents are scaled to ncolors.

The current color palette does not have a class or global object of it's own. It
is defined in the current style as an array of color numbers. One may change
the current palette with the TStyle: :SetPalette (Int t ncolors,
Int _t* color indexes) method

By default, or if ncolors <= 0, a default palette (see above) of 50 colors is
defined. The colors defined in this palette are good for coloring pads, labels,
and other graphic objects.

Ifncolors > 0andcolors = 0, the default palette is used with a
maximum of ncolors. If ncolors == 1 && colors == 0, then a pretty
palette with a spectrum Violet->Red is created. It is recommended to use this
pretty palette when drawing legos, surfaces or contours.

For example, to set the current palette to the “pretty” one, one has to do:

root[]

gStyle->SetPalette (1)

A more complete example is shown below. It illustrates the definition of a
custom palette. You can adapt it to suit your needs. In case you use it for
contour coloring, with the current color/contour algorithm, always define two
more colors than the number of contours.

void palette ()

{

// Example of creating new colors (purples)
// and defining of a new palette

const Int t colNum = 10;

Int t palette[colNum];

for -
// get the color and
// if it does not exist create
if

}

gStyle->SetPalette (colNum,palette);

TEF2 *£f2 = new TE2("f£2","exp (- (x"2)-(y*2))",-3,3,-3,3);
// two contours less than the

// number of colors in palette

f2->SetContour (colNum-2) ;

f2->Draw ("cont") ;

}

palette[i] = 230+1i;

(Int t i1i=0;i<colNum;i++) {

(! grROOT->GetColor (230+1)) {
TColor *color = new TColor
(230+i,1-(i/((colNum)*1.0)),0.3,0.5,"");
else {
TColor *color

= gROOT->GetColor (230+1) ;
color->SetRGB (1-(

i/ ((colNum)*1.0)),0.3,0.5);

152

December 2001 - version 3.1d Graphics and the Graphical User Interface

The Graphical Editor

2 ROOT has a built-in graphics editor to draw and edit graphic
primitives starting from an empty canvas or on top of a picture
FiN (e.g. histogram). The editor is started by selecting the “Editor”
item in the canvas “Edit” menu. A menu appears into an
Line independent window.
P, You can create the following graphical objects:
An arc or circle: Click on the center of the arc, and then move
Button the mouse. A rubber band circle is shown. Click again with the
. left button to freeze the arc.
Diamond
A line or an arrow: Click with the left button at the point where
Ellipse you want to start the arrow, then move the mouse and click
again with the left button to freeze the arrow.
Fa A Diamond: Click with the left button and freeze again with the
left button. The editor draws a rubber band box to suggest the
Pave outline of the diamond.
Favelahel An Ellipse: Proceed like for an arc. You can grow/shrink the
ellipse by pointing to the sensitive points. They are highlighted.
PaveText You can move the ellipse by clicking on the ellipse, but not on
the sensitive points. If, with the ellipse context menu, you have
FavesTeaxt selected a fill area color, you can move a filled-ellipse by
: pointing inside the ellipse and dragging it to its new position.
FolyLine Using the context menu, you can build an arc of ellipse and tilt
the ellipse.
CurlyLine o o
A Pad: Click with the left button and freeze again with the left
CUrlyArc button. The editor draws a rubber band box to suggest the
outline of the pad.
Text/l atex A Pave Label: Proceed like for a pad. Type the text to be put in
the box. Then type a carriage return. The text will be redrawn to
harker fill the box.
<..Graphical Cut..=|| A Pave Text or Paves Text: Proceed like for a pad. You can
then click on the TPaveText object with the right mouse button

and select the option AddText.

A Poly Line: Click with the left button for the first point, move the moose,
click again with the left button for a new point. Close the poly-line with a
double click. To edit one vertex point, pick it with the left button and drag to
the new point position.

A CurlyLine: Proceed as for the arrow/line. Once done, click with the third
button to change the characteristics of the curly line, like transform it to wave,
change the wavelength, etc...

A CurlyArc: Proceed like for the arrow/line. The first click is located at the
position of the center, the second click at the position of the arc beginning.
Once done, one obtains a curly ellipse, for which one can click with the third
button to change the characteristics, like transform it to wavy, change the
wavelength, set the minimum and maximum angle to make an arc that is not
closed, etc...

A Text /Latex string: Click with the left button where you want to draw the
text, then type in the text terminated by carriage return. All TLatex
expressions are valid. To move the text or formula, point on it keeping the left
mouse button pressed and drag the text to its new position. You can
grow/shrink the text if you position the mouse to the first top-third part of the
string, then move the mouse up or down to grow or shrink the text

Graphics and the Graphical User Interface December 2001 - version 3.1d 153

respectively. If you position the mouse near the bottom-end of the text, you
can rotate it.

A Marker: Click with the left button where to place the marker. The marker
can be modified by gstyle->SetMarkerStyle () .

A Graphical Cut: Click with the left button on each point of a polygon
delimiting the selected area. Close the cut by double clicking on the last
point. A TCutG object is created. It can b e used as a selection for a
TTree: :Draw. You can get a pointer to this object with TCutG cut =
(TCutG*) gPad->GetPrimitive ("CUTG").

Once you are happy with your picture, you can select the save as
canvas.C item in the canvas File menu. This will automatically generate a
script with the C++ statements corresponding to the picture. This facility also
works if you have other objects not drawn with the graphics editor
(histograms for example).

154

December 2001 - version 3.1d Graphics and the Graphical User Interface

Copy/Paste With DrawClone

You can make a copy of a canvas using TCanvas: : DrawClonePad. This
method is unique to TCanvas. It clones the entire canvas to the active pad.
There is a more general method TObject: : DrawClone, which all objects
descendents of TObject, specifically all graphic objects inherit. Below are
two examples, one to show the use of DrawClonePad and the other to show
the use of DrawClone.

Example 1: TCanvas::DrawClonePad
In this example we will copy an entire canvas to a new one with
DrawClonePad.

Run the script draw2dopt.C.

root [] .x tutorials/draw2dopt.C

This creates a canvas with 2D histograms. To make a copy of the canvas
follows these steps

Right-click on it to bring up the context menu.
Select DrawClonePad.

This copies the entire canvas and all its sub-pads to a new canvas. The
copied canvas is a deep clone, and all the objects on it are copies and
independent of the original objects. For instance, change the fill on one of the
original histograms, and the cloned histogram retains its attributes.

DrawClonePad will copy the canvas to the active pad; the target does not
have to be a canvas. It can also be a pad on a canvas.

Example 2: TObject::DrawClone

If you want to copy and paste a graphic object from one canvas or pad to
another canvas or pad, you can do so with DrawC1one method inherited
from TObject. The TObject: :DrawClone method is inherited by all
graphics objects.

In this example, we create a new canvas with one histogram from each of the
canvases from the script draw2dopt.C.

1. Start a new ROOT session and execute the script draw2dopt.C
Select a canvas displayed by the script, and create a new canvas from
the File menu (c1).

3. Make sure that the target canvas (c1) is the active one by middle
clicking on it. If you do this step right after step 2, c1 will be active.

4. Select the pad with the first histogram you want to copy and paste.

5. Right click on it to show the context menu, and select DrawClone.

6. Leave the option blank and hit OK.

Repeat these steps for one histogram on each of the canvases created by
the script, until you have one pad from each type.

Graphics and the Graphical User Interface December 2001 - version 3.1d 155

If you wanted to put the same annotation on each of the sub pads in the new
canvas, you could use DrawClone to do so. Here we added the date to each
pad. The steps to this are:

1. Create the label in on of the pads with the graphics editor.

2. Middle-click on the target pad to make it the active pad

3. Use DrawClone method of the label to draw it in each of the other
panels.

The option in the DrawClone method argument is the Draw option for a
histogram or graph. A call to TH1: : DrawClone can clone the histogram
with a different draw option.

ot M=l E3

File Edit ¥iew Options Inspect Classes Help

LEGO1

E4gaL1 + thgau[s]+ eandauin

Ey0aLN + tynaua(s]+ eviandauf 10

4

Ei
et 1515000 |

4 £ = -1 o

T

Bl L B . ok om

= 15/9/00

L
L

Copy/Paste Programmatically

To copy and paste the four pads from the command line or in a script you
would execute the following statements:

root [] .x tutorials/draw2dopt.C

root [] TCanvas cl("cl","Copy Paste",200,200,800,600)
root [] surfaces->cd(1l); // get the first pad
root [] TPad * pl = gPad;

root [] lego->cd(2); // get the next pad
root [] TPad * p2 = gPad;

root [] cont->cd(3):; // get the next pad
root [] TPad * p3 = gPad;

root [] e2h->cd(4); // get the next pad
root [] TPad * p4 = gPad;

root [] // draw the four clones
root [] el->cd();

root [] pl->DrawClone() ;

root [] p2->DrawClone() ;

root [] p3->DrawClone() ;

root [] p4->DrawClone() ;

Note that the pad is copied to the new canvas in the same location as in the
old canvas. For example if you were to copy the third pad of surf to the top

156 December 2001 - version 3.1d Graphics and the Graphical User Interface

left corner of the target canvas you would have to reset the coordinates of the
cloned pad.

Legends

Legends for a graph are obtained with a TLegend object. This object points
to markers/lines/boxes/histograms/graphs and represent their marker/line/fill
attribute. Any object that has a marker or line or fill attribute may have an
associated legend.

A TLegend is a panel with several entries (class TLegendEntry) and is
created by the constructor

TLegend (Double t x1, Double t yl,Double t x2, Double t y2,
const char *header, Option t *option)

The legend is defined with default coordinates, border size and option
x1,vy1l,x2,y2 are the coordinates of the legend in the current pad (in NDC
coordinates by default). The default text attributes for the legend are:

e Alignment =12 left adjusted and vertically centered

e Angle =0 (degrees)

e Color =1 (black)

e Size = calculate when number of entries is known

e Font = helvetica-medium-r-normal scalable font = 42, and bold =
62 for title

The title It is a regular entry and supports TLatex. The default is no title
(header = 0). The options are the same as for TPave; by default, they are
"brNDC".

Once the legend box is created, one has to add the text with the
AddEntry () method:

TLegendEntry* TLegend::AddEntry (TObject *obj, const char
*label, Option_t *option)

The parameters are:

e *0obj: is a pointer to an object having marker, line, or fill attributes
(for example a histogram, or graph)
e label: isthe label to be associated to the object

e option:
o "L” draw line associated with line attributes of obj if obj has
them (inherits from TAttLine)
o "P” draw poly-marker associated with marker attributes of
obj if obj has them (inherits from TAttMarker)
o "F” draw a box with fill associated with fill attributes of ob if
obj has them (inherits TAttFill)

One may also use the other form of AddEntry:

TLegendEntry* TLegend::AddEntry(const char *name, const
char *label, Option t *option)

Where name is the name of the object in the pad. Other parameters are as in
the previous case.

Graphics and the Graphical User Interface December 2001 - version 3.1d 157

Here's an example of a legend created with TLegend

abs(sin(x)/(x)) |
= The Legend Title
i One Theory
0 8_ B Another Theory
oL * The Data
L s EF’T ty) latex formula
06—
r o
oa- % LAY P
" r) L Yy E 3
i 0y D * 5 Y
L s 3 '.’ “ i i
L ¥ L] & ¥ \
02! » L v
“H - [N I B
b 5 i [1
i Y N L
0 ol ¥ R

0 1 2 3 4 5 & 7 8 9 1

The legend part of this plot was created as follows:

leg = new TLegend(0.4,0.6,0.89,0.89);
leg->AddEntry (funl, "One Theory","1");
leg->AddEntry (fun3, "Another Theory","f");
leg->AddEntry (gr, "The Data","p");
leg->Draw () ;
// oops we forgot the blue line... add it after
leg->AddEntry (funz,

"#sqgrt{2#pi} P {T} (#gamma) latex formula","f");
// and add a header (or "title") for the legend
leg->SetHeader ("The Legend Title");
leg->Draw () ;

Where funl, fun2, fun3 and gr are pre-existing functions and graphs. You
can edit the TLegend by right clicking on it.

The PostScript Interface

To generate a PostScript (or encapsulated PostScript) file for a single image
in a canvas, you can:

Select the “Print PostScript”item in the canvas “File“ menu. By
default, a PostScript file called canvas.ps is generated.

Click in the canvas area, near the edges, with the right mouse button and
select the “Print“ item. You can select the name of the PostScript file. If the
file name is xxx . ps, you will generate a PostScript file named xxx . ps. If the
file name is xxx . eps, you generate an encapsulated Postscript file instead.

In your program (or script), you can type:

cl->Print ("xxx.ps")

Or

cl->Print ("xxx.eps")

This will generate a file of canvas pointed to by c1.

158 December 2001 - version 3.1d Graphics and the Graphical User Interface

padl->Print ("xxx.ps")

This prints the picture in the pad pointed by pad1.

The TPad: : Print method has a second parameter called option. Its value

can be:

-0 which is the default and is the same as "ps"
- "ps" a Postscript file is produced

- "eps" an Encapsulated Postscript file is produced
- "gif" a GIF file is produced

- "exx" a C++ macro file is produced

You do not need to specify the second parameter, you can indicate by the
filename extension what format you want to save a canvas in (i.e.
canvas.ps, canvas.gif, canvas.C,em)

The size of the PostScript picture, by default, is computed to keep the aspect
ratio of the picture on the screen, where the size along x is always 20 cm.

You can set the size of the PostScript picture before generating the picture
with a command such as:

TPostScript myps ("myfile.ps",111)
myps.Range (xsize,ysize);
object->Draw () ;

myps.Close () ;

The first parameter in the TPostScript constructor is the name of the file.
The second parameter is the format option.

- 1M - ps portrait
- 12 - ps landscape
- 113 - eps

You can set the default paper size with:

gStyle->SetPaperSize (xsize, ysize);

You can resume writing again in this file with myps.Open () . Note that you
may have several Post Script files opened simultaneously.

To add text to a postscript file, use the method TPostScript: :Text (
x,y,"string"). This method write the string in quotes into a PostScript file
at position x,y in world coordinates.

Special Characters
The following characters have a special action on the PostScript file:
*: Go to Greek

': Go to special

4

: Go to Zapf Dingbats

[EV}

: Go to subscript
~: Go to superscript

!': go to normal level of script

Graphics and the Graphical User Interface December 2001 - version 3.1d 159

&: Backspace one character
#: End of Greek or of Zapf Dingbats

These special characters are printed as such on the screen. To generate one
of these characters on the PostScript file, you must escape it with the escape
character "@".

The use of these special characters is illustrated in several scripts referenced
by the TPostScript constructor.

Multiple Pictures in a PostScript File: Case 1

The following script is an example illustrating how to open a PostScript file
and draw several pictures. The generation of a new PostScript page is
automatic when TCanvas: :Clear is called by ocbject->Draw () .

TFile f("hsimple.root");
TCanvas cl("cl","canvas",800,600);

//select PostScript output type

Int t type = 111; //portrait ps
// Int_t type 112; //landscape ps
// Int_t type = 113; //eps

//create a PostScript file and set the paper size
TPostScript ps("test.ps", type);
ps.Range (16,24); [//set x,y of printed page

//draw 3 histograms from file hsimple.root on separate pages
hpx->Draw () ;
cl.Update () ; //force drawing in a script
hprof->Draw () ;
cl.Update () ;
hpx->Draw ("legol") ;
cl.Update();
ps.Close () ;

160

December 2001 - version 3.1d Graphics and the Graphical User Interface

Multiple Pictures a PostScript File: Case 2

This example shows 2 pages. The canvas is divided.

TPostScript: :NewPage must be called before starting a new picture.
object->Draw does not clear the canvas in this case because we clear only
the pads and not the main canvas. Note that c1->Update must be called at
the end of the first picture.

TFile *fl = new TFile("hsimple.root");
TCanvas *cl = new TCanvas ("cl");
TPostScript *ps = new TPostScript("file.ps",112);
cl->Divide(2,1);
// picture 1
ps—->NewPage () ;
cl->cd (1) ;
hpx->Draw () ;
cl->cd(2);
hprof->Draw () ;
cl->Update () ;
// picture 2
ps—->NewPage () ;
cl->cd(1l);
hpxpy->Draw () ;
cl->cd(2);
ntuple->Draw ("px") ;
cl->Update() ;
ps—->Close () ;
// invoke PostScript viewer
gSystem->Exec ("gs file.ps");

Create or Modify a Style

All objects that can be drawn in a pad inherit from one or more attribute
classes like TAttLine, TAttFill, TAttText, TAttMarker.When the
objects are created, their default attributes are taken from the current style.
The current style is an object of the class TStyle and can be referenced via
the global variable gstyle (in TStyle.h). See the class TStyle for a
complete list of the attributes that can be set in one style. ROOT provides
several styles called

e "Default" The default style

e "Plain" The simple style (black and white)
e "Bold" Bolder lines
e "Video" Suitable for html output or screen viewing

Graphics and the Graphical User Interface December 2001 - version 3.1d 161

The "Default" style is created by:

TStyle *default = new TStyle("Default","Default Style");

The "Plain" style can be used if you are working on a monochrome display
or if you want to get a "conventional" PostScript output. As an example, these
are the instructions in the ROOT constructor to create the "P1ain" style.

TStyle *plain = new TStyle("Plain","Plain Style (no
colors/fill areas)");

plain->SetCanvasBorderMode (0) ;
plain->SetPadBorderMode (0) ;
plain->SetPadColor (0) ;
plain->SetCanvasColor (0) ;
plain->SetTitleColor (0)
plain->SetStatColor (0) ;

’

You can set the current style with:

gROOT->SetStyle (style name);

You can get a pointer to an existing style with:

TStyle *style = gROOT->GetStyle(style name);

You can create additional styles with:

TStyle *stl = new TStyle("stl","my style");
stl->Set....
stl->cd(); // this becomes now the current style gStyle

In your rootlogon.C file, you can redefine the default parameters via
statements like:

gStyle->SetStatX (0.7);
gStyle->SetStatW(0.2);
gStyle->SetLabelOffset (1.2);
gStyle->SetLabelFont (72);

Note that when an object is created, its attributes are taken from the current
style. For example, you may have created a histogram in a previous session
and saved it in a file. Meanwhile, if you have changed the style, the histogram
will be drawn with the old attributes. You can force the current style attributes
to be set when you read an object from a file by calling ForceStyle_before
reading the objects from the file.

gROOT->ForceStyle () ;

When you call grROOT->ForceStyle () and read an object from a ROOT
file, the objects method UseCurrentStyle is called. The attributes saved
with the object are replaced by the current style attributes. You call also call
myObject->UseCurrentStyle () directly. For example if you have a
canvas or pad with your histogram or any other object, you can force these
objects to get the attributes of the current style with:

162 December 2001 - version 3.1d Graphics and the Graphical User Interface

canvas->UseCurrentStyle () ;

The description of the style functions should be clear from the name of the
TStyle setters or getters. Some functions have an extended description, in
particular:

e TStyle::SetLabelFont

e TStyle::SetlLineStyleString: setthe format of dashed lines.
e TStyle::SetOptStat

e TStyle::SetPalette to change the colors palette

e TStyle::SetTitleOffset

Graphics and the Graphical User Interface December 2001 - version 3.1d 163

10 Folders And Tasks

Folders

% ROOT Dbject Browser M=l Ed

File Wiew Opfions

ERESE = & 2 E
| &1l Falders | Contents of “/rootfClas
(root 2 [[] Base Classes
B- D Clazzes [Data Members
- il ([0 Methods

L—l:lbcu:ul

R

B [CATChss
c-[CTEChss

- - [TParticle
- - (LA TOhiect
- - (L Thamexd

- [[ATGToolEar

:L - [CTGFrame
- [CATGWindow
L [CATGObject
L LT Okt

- [LTsignalHandler
- - (LA TFileHandler

C L [CATGMenuTitle

E :L - [CTGEutton Group
' ' - |:|TI3 CompositeFrame

- [TGHarizontal Frame
DL [T TGListuiew

v () Data Members [CFieal Data Members
B ([Real Data Mem

- - (L] Methods
- - [Base Classes

' ' -[[ATGCarvas
i ,L - [CATTimer p—
e e
|4 Obiects. | Doubly linked list v

A TFolder is a collection of objects visible and
expandable in the ROOT object browser. Folders
have a name and a title and are identified in the
folder hierarchy by an "UNIX-like" naming
convention. The base of all folders is //root. Itis
visible at the top of the left panel in the browser.
The browsers shows several folders under
//root.

New folders can be added and removed to/from a
folder.

Why Use Folders?

One reason to use folders is to reduce class
dependencies and improve modularity. Each set of
data has a producer class and one or many
consumer classes. When using folders, the
producer class places a pointer to the data into a
folder, and the consumer class retrieves a
reference to the folder.

The consumer can access the objects in a folder
by specifying the path name of the folder.

Here is an example of a folder's path name:

//root/Event/Hits/TCP

One does not have to specify the full path name. If
the partial path name is unique, it will find it,
otherwise it will return the first occurrence of the
path.

Folders And Tasks

December 2001 - version 3.1d 165

The first diagram shows a system without folders. The objects have pointers to
each other to access each other's data. Pointers are an efficient way to share
data between classes. However, a direct pointer creates a direct coupling
between classes. This design can become a very tangled web of dependencies
in a system with a large number of classes.

data

In the second diagram, a reference to the data is in the folder and the
consumers refer to the folder rather than each other to access the data. The
naming and search service provided by the ROOT folders hierarchy provides an
alternative. It loosely couples the classes and greatly enhances I/O operations. In
this way, folders separate the data from the algorithms and greatly improve the
modularity of an application by minimizing the class dependencies.

Producer Folder Consumers

0s =)
6V —¢3)

In addition, the folder hierarchy creates a picture of the data organization. This is
useful when discussing data design issues or when learning the data
organization. The example below illustrates this point.

How to Use Folders

Using folders means building a hierarchy of folders, posting the reference to the
data in the folder by the producer, and creating a reference to the folder by the
consumer.

Creating a Folder Hierarchy

To create a folder hierarchy you add the top folder of your hierarchy to //root.
Then you add a folder to an existing folder with the TFolder: :AddFolder
method. This method takes two parameters: the name and title of the folder to be
added. It returns a pointer of the newly created folder.

166 December 2001 - version 3.1d Folders And Tasks

The code below creates the folder hierarchy shown in the browser.

{
// Add the top folder of my hierary to //root

TFolder *aliroot = gROOT->GetRootFolder ()
->AddFolder ("aliroot","aliroot top level folders");

// Add the hierarchy to the list of browsables
gROOT->GetListOfBrowsables () ->Add (aliroot, "aliroot");

// Create and add the constants folder

TFolder *constants = aliroot

->AddFolder ("Constants", "Detector constants");
// Create and add the pdg folder to pdg
TFolder *pdg = constants

->AddFolder ("DatabasePDG", "PDG database");

// Create and add the run folder
TFolder *run = aliroot
->AddFolder ("Run", "Run dependent folders");
// Create and add the configuration folder to run
TFolder *configuration = run
->AddFolder ("Configuration", "Run configuration");

// Create and add the run_mc folder
TFolder *run mc = aliroot
->AddFolder ("RunMC", "MonteCarlo run dependent folders");

// Create and add the configuration mc folder to run mc
TFolder *configuration mc = run mc
->AddFolder ("Configuration", "MonteCarlo run configuration");

}

In this macro, the folder is also added to the

¥ RODT Object Browser _ IOl x}| Iist of browsables. This way, it is visible in

the browser on the top level.

Eile Wiew OQptions Help
root - Oo o it .
E o & f Posting Data to a Folder
| &1l Folders | Contents of "froot" (Producer)
Sy oot (L2 Browsers)
() homelghitspanacek/Uise (3 Canvasss A TFolder can contain qther folders as
CAROOT Files shown above or any TObject
) (3 Classes descendents. In general, users will not post
[—TW'”:"“ (L Clearups a single object to a folder, they will store a
& [ﬂ_i—l':'I'ﬂstEmt3 (] Colors collection or multiple collections in a folder.
o~ [DatabazePDG () Furections For example, to add an array to a folder:
EJ_ r_j Fig Con i I:l Geometries TODAA N
: onfiguration] Hardlers Jj rfay array; .
E-C]HWME CMapr run_mc->Add (array) ;
L-Dtnnﬁguratiu:un CI apries
ROOT Files
(£ Sockets Reading Data from a Folder
(221 Speciials (CO"SU mer)
(3 streamerinfo One can search for a folder or an object in a
[Styles folder using the TROOT: : FindObjectAny
[Tasks method. FindObjectAny analyzes the
7 I I _’I [Qaliroot string passed as its argument and searches
| 16 Dhiects. | P

Folders And Tasks December 2001 - version 3.1d 167

in the hierarchy until it finds an object or folder matching the name.

With FindObjectAny, you can give the full path name, or the name of the
folder. If only the name of the folder is given, it will return the first instance of that
name.

conf = (TFolder*) gROOT-> FindObjectAny("/aliroot/Run/Configuration");
// or
conf = (TFolder*) gROOT-> FindObjectAny ("Configuration");

A string-based search is time consuming. If the retrieved object is used
frequently or inside a loop, you should save a pointer to the object as a class
data member. Use the naming service only in the initialization of the consumer
class.

When a folder is deleted, any reference to it in the parent or other folder is
deleted also.

By default, a folder does not own the object it contains. You can overwrite that
with TFolder: : SetOwner. Once the folder is the owner of its contents, the
contents are deleted when the folder is deleted.

Some ROOT objects are automatically added to the folder hierarchy. For
example, the following folders exist on start up:

//root/ROOT Files with the list of open Root files
//root/Classes with the list of active classes
//root/Geometries with active geometries
//root/Canvases with the list of active canvases
//root/Styles with the list of graphics styles
//root/Colors with the list of active colors

For example, if a file myFile. root is added to the list of files, one can retrieve a
pointer to the corresponding TFile object with a statement like:

TFile *myFile = (TFile*)gROOT->FindObjectAny ("/ROOT Files/myFile.root");
// or
TFile *myFile = (TFile*)gROOT->FindObjectAny ("myFile.root");

Tasks

Tasks can be organized into a hierarchy and displayed in the browser. The
TTask class is the base class from which the tasks are derived. To give a task
functionality, you need to subclass the TTask class and override the Exec
method.

An example of TTask subclasses is in SROOTSYS/tutorials/MyTasks.cxx.
An example script that creates a task hierarchy and adds it to the browser is
SROOTSYS/tutorials/tasks.C.

168 December 2001 - version 3.1d Folders And Tasks

Here is part of MyTasks.cxx that shows how to subclass from TTask.

// A set of classes deriving from TTask
// see macro tasks.C to see an example of use
// The Exec function of each class prints one

}i

}i

// line when it is called.
finclude "TTask.h"
class MyRun : public TTask {

public:

class MyEvent : public TTask {

public:

MyRun () {;}

MyRun (const char *name, const char *title);
virtual ~MyRun() {;}

void Exec (Option_t *option="");

ClassDef (MyRun, 1) // Run Reconstruction task

MyEvent () {;}

MyEvent (const char *name, const char *title);
virtual ~MyEvent () {;}

void Exec (Option t *option="");

ClassDef (MyEvent, 1) // Event Reconstruction task

Later in MyTasks.cxx, we can see examples of the constructor and overridden
Exec () method:

{
}

{

}

ClassImp (MyRun)

MyRun: :MyRun (const char *name, const char *title)

void MyRun::Exec(Option_t *option)

:TTask (name, title)

printf ("MyRun executing\n");

Each TTask derived class may contain other TTasks that can be executed
recursively. In this way, a complex program can be dynamically built and
executed by invoking the services of the top level task or one of its subtasks.

The constructor of TTask has two arguments: the name and the title. This script
creates the task defined above, and creates a hierarchy of tasks.

Folders And Tasks December 2001 - version 3.1d 169

// Show the tasks in a browser.

// To execute a Task, use the context context menu and select
// the item "ExecuteTask"

// see also other functions in the TTask context menu, such as
// -setting a breakpoint in one or more tasks

// -enabling/disabling one task, etc

void tasks ()

{
gROOT->ProcessLine (".L MyTasks.cxx+");

TTask *run = new MyRun ("run","Process one run");

TTask *event = new MyEvent ("event", "Process one event");

TTask *geomInit = new MyGeomInit ("geomInit","Geometry Initialisation");
TTask *matInit = new MyMaterialInit ("matInit","MaterialsInitialisation");
TTask *tracker = new MyTracker ("tracker","Tracker manager");

TTask *tpc = new MyRecTPC ("tpc","TPC Reconstruction");

TTask *its = new MyRecITS("its","ITS Reconstruction");

TTask *muon = new MyRecMUON ("muon", "MUON Reconstruction");
TTask *phos = new MyRecPHOS ("phos", "PHOS Reconstruction");
TTask *rich = new MyRecRICH ("rich","RICH Reconstruction");
TTask *trd = new MyRecTRD("trd","TRD Reconstruction");

TTask *global = new MyRecGlobal ("global","Global Reconstruction");

// Create a hierarchy by adding sub tasks

run->Add (geomInit) ;

run->Add (matInit);

run->Add (event) ;

event->Add (tracker) ;

event->Add (global) ;

tracker->Add (tpc) ;

tracker->Add (its) ;

tracker->Add (muon) ;

tracker->Add (phos) ;
()
(

’

tracker->Add (rich
tracker->Add (trd) ;

// Add the top level task
gROOT->GetListOfTasks () -=>Add (run) ;

// Add the task to the browser
gROOT->GetListOfBrowsables () ->Add (run) ;
new TBrowser;

Note the first line, it loads the class definitions in MyTasks . cxx with ACLIC.
ACLIC builds a shared library and adds the classes to the CINT dictionary (see
"How to Add a Class with ACLiIC" in the chapter "Adding a Class").

To execute a TTask, you call the ExecuteTask method. ExecuteTask will
recursively call:

e the TTask: :Exec method of the derived class
e TTask::ExecuteTasks to execute for each task the list of its subtasks.

If the top level task is added to the list of ROOT browse-able objects, the tree of
tasks can be seen in the ROOT browser. To add it to the browser, get the list of
browse-able objects first and add it to the collection.

gROOT->GetListOfBrowsables () ->Add (run) ;

The first parameter of the Add method is a pointer to a TTask, the second
parameter is the string to show in the browser. If the string is left out, the name of
the task is used.

170

December 2001 - version 3.1d Folders And Tasks

After executing the script above the browser will look like this.

% RODT Object Browser M=l E

Eile Miew Options Help
Iatracker j By

| &1l Folders | Contents of "frun/eventtracl

(root [Tits CAruon Cdphos
[lhomeighifspanacekiroot 250 [Carich [COtee [C3trd
(AROOT Files
[CArun
:L-Dgecumlnit

« - [matnit
EI-I:levent

-)

A I
- [its
- [muan
-~ [[dphos
:L-I:|ri|:h
-~ [(trd
-+ [(Dalobal

al | B

|6 Ohijects. | v

Execute and Debug Tasks

The browser can be used to start a task, set break points at the beginning of a
task or when the task has completed. At a breakpoint, data structures generated
by the execution up this point may be inspected asynchronously and then the
execution can be resumed by selecting the "Continue" function of a task.

A Task may be active or inactive (controlled by TTask: : SetActive). When a
task is inactive, its sub tasks are not executed.

A Task tree may be made persistent, saving the status of all the tasks.

Folders And Tasks December 2001 - version 3.1d 171

11

Input/Output

This chapter covers the saving and reading of objects to and from ROOT files. It
begins with an explanation of the physical layout of a ROOT file. It includes a
discussion on compression, and file recovery. Then we explain the logical file,
the class TFile and its methods. We show how to navigate in a file, how to save
objects and read them back. We also include a discussion on Streamers.
Streamers are the methods responsible to capture an objects current state to
save it to disk or send it over the network. At the end of the chapter is a
discussion on the two specialized ROOT files: TNetFile and TWebFile.

The Physical Layout of ROOT Files

A ROOT file is like a UNIX file directory. It can contain directories and objects
organized in unlimited number of levels. It also is stored in machine independent
format (ASCII, IEEE floating point, Big Endian byte ordering).

To look at the physical layout of a ROOT file, we first create one. This example
creates a ROOT file and 15 histograms, fills each histogram with 1000 entries
from a gaussian distribution, and writes them to the file.

}

char name[10], title[20];

// Create an array of Histograms
TObjArray Hlist (0);

// create a pointer to a histogram
TH1E* h;

// make and fill 15 histograms

// and add them to the object array
for (Int t 1 = 0; 1 < 15; i++) |

// open a file and write the array to the file
TFile f ("demo.root","recreate");
Hlist->Write () ;

f.Close();

sprintf (name, "h%d",i);

sprintf (title, "histo nr:%d",i);

h = new TH1F (name, title, 100,-4,4);
Hlist.Add (h);

h->FillRandom ("gaus",1000) ;

The example begins with a call to the TFile constructor. TFile is the class
describing the ROOT file. In the next section, when we discuss the logical file
structure, we will cover TFile in detail. You can also see that the file has the

Input/Output

December 2001 - version 3.1d 173

extension " . root™", this convention is encouraged, however ROOT does not
depend on it.

The last line of the example closed the file. To view its contents it needs to be
opened again, and once opened we can view the contents in the ROOT Object
browser by creating a TBrowser object.

root [] TFile f ("demo.root")
root [] TBrowser browser;
In the browser, we can see the 15 histograms we created.
[® RODOT Object Browser M=l E3
Eile Miew Options Help
I 25 demo.root ;I o
| &1l Folders | Contents of "/ROOT Files/demo roat"
(root e ;1 [01051 [111 | 1200
DMDmeispanaJ:ekﬁutDrials |.k h13;1 |.k hi4;1 |.h. hi;1 |k b1
LIROAT Fies i r3t Gnet (G s e bt
= "a clerno root |_k h7-1 |_k h&- Lk e
| 15 Ohbijects. | v
Once we have the TFile object, we can call the TFile: :Map () method to view
the physical layout. The output of Map () prints the date/time, the start address of
the record, the number of bytes in the record, the class name of the record, and
the compression factor.
root [] f£.Map()
20010404/092347 At:64 N=84 TFile
20010404/092347 At:148 N=380 TH1F CX = 2.49
20010404/092347 At:528 N=377 TH1F cX = 2.51
20010404/092347 At:905 N=378 THIF CX = 2.50
20010404/092347 At:1283 N=376 THIF CX = 2.52
20010404/092347 At:1659 N=374 TH1F CX = 2.53
20010404/092347 At:2033 N=390 TH1F CX = 2.43
20010404/092347 At:2423 N=380 THIF CX = 2.49
20010404/092347 At:2803 N=380 THIF CX = 2.49
20010404/092347 At:3183 N=385 TH1F CX = 2.46
20010404/092347 At:3568 N=374 TH1F CX = 2.53
20010404/092347 At:3942 N=382 THIF CX = 2.49
20010404/092347 At:4324 N=380 THIF CX = 2.50
20010404/092347 At:4704 N=387 TH1F CX = 2.45
20010404/092347 At:5091 N=382 TH1F CX = 2.49
20010404/092347 At:5473 N=381 THIF CX = 2.49
20010404/092347 At:5854 N=2390 StreamerInfo CX = 3.41
20010404/092347 At:8244 N=732 KeysList
20010404/092347 At:8976 N=53 FreeSegments
20010404/092347 At:9029 N=1 END
We see the fifteen histograms (TH1F ' s) with the first one starting at byte 148.
We also see an entry TFile. You may notice that the first entry starts at byte 64.
The first 64 bytes are taken by the file header.
174 December 2001 - version 3.1d Input/Output

The File Header

This table shows the file header information:

File Header Information

Byte

1->4

5->8

9->12
13 -> 16
17 -> 20
21->24
25->28
29 -> 32
33->33
34 -> 37

Value Name
"root"
fVersion
fBEGIN

fEND
fSeekFree
fNbytesFree
nfree
fNbytesName
fUnits

fCompress

Description

Root file identifier

File format version

Pointer to first data record

Pointer to first free word at the EOF

Pointer to FREE data record

Number of bytes in FREE data record
Number of free data records

Number of bytes in TNamed at creation time
Number of bytes for file pointers

Zip compression level

The first four bytes of the file header contain the string "root" which identifies a
file as a ROOT file. Because of this identifier, ROOT is not dependent on the
" . root™" extension. It is still a good idea to use the extension, just for us to
recognize them easier.

The nfree and value is the number of free records. A ROOT file has a maximum
size of 2 gigabytes. This variable along with FNBytesFree keeps track of the
free space in terms of records and bytes. This count also includes the deleted
records, which are available again.

The Top Directory Description

The 84 bytes after the file header contain the top directory description, including
the name, the date and time it was created, and the date and time of the last

modification.

20010404/092347

At:64

TFile

The Histogram Records

What follows are the 15 histograms, in records of variable length.

20010404/092347
20010404/092347

At:148
At:528

N=380
N=377

TH1F CX
TH1F CX

The first four bytes of each record is an integer holding the number of bytes in
this record. A negative number flags the record as deleted, and makes the space
available for recycling in the next write. The rest of bytes in the header contain all
the information to uniquely identify a data block on the file. This is followed by the
object data.

Input/Output

December 2001 - version 3.1d 175

This table explains the values in each individual record:

Record Information

Byte Value Name Description

1->4 Nbytes Length of compressed object (in bytes)
5->6 Version TKey version identifier

7->10 ObjLen Length of uncompressed object

11->14 Datime Date and time when object was written to file
15->16 KeyLen Length of the key structure (in bytes)

17 ->18 Cycle Cycle of key

19->22 SeekKey Pointer to record itself (consistency check)
23->26 SeekPdir Pointer to directory header

27 lname Number of bytes in the class name

28->.. ClassName Object Class Name

> lname Number of bytes in the object name

> Name 1Name bytes with the name of the object
> 1Title Number of bytes in the object title

> Title Title of the object

..... > DATA Data bytes associated to the object

You see a reference to TKey. It is explained in detail in the next section.

The Class Description List (Streamerinfo List)

The histogram records are followed by a list of class descriptions called
StreamerInfo. The list contains the description of each class that has been
written to file.

20010404/092347 At:5854 N=2390 StreamerInfo CX = 3.41

The class description is recursive, because to fully describe a class, its ancestors
and object data members have to be described also.

In demo . root, the class description list contains the description for:

TH1F

all classes in the TH1F inheritance tree

all classes of the object data members

all classes in the object data members' inheritance tree.

This description is implemented by the TStreamerInfo class, and is often
referred to as simply StreamerInfo.

176 December 2001 - version 3.1d Input/Output

You can print afile's StreamerInfo list with the TFile: : ShowStreamerInfo
method. Below is an example of the output. Only the first line of each class
description is shown.

The demo . root example contains only TH1F objects. Here we see the recursive
nature of the class description, it contains the StreamerInfo of all the classes
needed to describe TH1F.

root [] f£.ShowStreamerInfo ()

StreamerInfo for class: TH1F, version=1
BASE TH1 offset= 0 type= 0 1-Dim histogram base class
BASE TArrayF offset= 0 type= 0 Array of floats

StreamerInfo for class: TH1l, version=3
BASE TNamed offset= 0 type=67 The basis for a named
object (name, title)

BASE TAttLine offset= 0 type= 0 Line attributes

BASE TAttFill offset= 0 type= 0 Fill area attributes

BASE TAttMarker offset= 0 type= 0 Marker attributes

Int t fNcells offset= 0 type= 3 number of bins(1D),
cells (2D) +U/Overflows

TAxis fXaxis offset= 0 type=61 X axis descriptor

TAxis fYaxis offset= 0 type=61 Y axis descriptor

TAxis fZaxis offset= 0 type=61 Z axis descriptor

Short t fBarOffset offset= 0 type= 2 (1000*offset) for bar

charts or legos
Short_t fBarWidth offset= 0 type= 2 (1000*width) for bar
charts or legos

Stat t fEntries offset= 0 type= 8 Number of entries

Stat_t fTsumw offset= 0 type= 8 Total Sum of weights

Stat_t fTsumw2 offset= 0 type= 8 Total Sum of squares of weights
Stat t fTsumwx offset= 0 type= 8 Total Sum of weight*X

Stat t fTsumwx2 offset= 0 type= 8 Total Sum of weight*X*X
Double t fMaximum offset= 0 type= 8 Maximum value for plotting
Double t fMinimum offset= 0 type= 8 Minimum value for plotting
Double t fNormFactor offset= 0 type= 8 Normalization factor

TArrayD fContour offset= 0 type=62 Array to display contour levels
TArrayD fSumw2 offset= 0 type=62 Array of sum of squares of weights
TString fOption offset= 0 type=65 histogram options

TList* fFunctions offset= 0 type=63 ->Pointer to list of

functions (fits and user)
StreamerInfo for class: TNamed, version=1
gtreamerlnfo for class: TAttLine, version=1
gtreamerlnfo for class: TAttFill, version=1
gtreamerlnfo for class: TAttMarker, version=1
gtreamerlnfo for class: TArrayF, version=l1
étreamerlnfo for class: TArray, version=1
étreamerlnfo for class: TAxis, version=6

StreamerInfo for class: TAttAxis, version=4

ROOT allows a class to have multiple versions, and each version has its own
description in form of a StreamerInfo. Above you see the class name and
version number.

The StreamerInfo list has only one description for each class/version
combination it encountered. The file can have multiple versions of the same
class, for example objects of old and new versions of a class can be in the same
file.

The StreamerInfo is described in detail in the section on Streamers.

Input/Output December 2001 - version 3.1d 177

The List of Keys and The List of Free Blocks

The last three entries on the output of TFile: :Map () are the list of keys, the list
of free segments, and the address where the data ends.. When a file is closed, it
writes a linked list of keys at the end of the file. This is what we see in the second
to last entry. In our example, the list of keys is stored in 732 bytes beginning at

byte# 8244
20010404/092347 At:8244 N=732 KeysList
20010404/092347 At:8976 N=53 FreeSegments
20010404/092347 At:9029 N=1 END

The second to last entry is a list of free segments. In our case, this starts 8976
and is not very long, only 53 bytes, since we have not deleted any objects.

The last entry is the address of the last byte in the file.

File Recovery

A file may become corrupted or it may be impossible to write it to disk and close
it properly. For exampile if the file is too large and exceeds the disk quota, or the
job crashes or a batch job reaches its time limit before the file can be closed. In
these cases, it is imperative to recover and retain as much information as
possible. ROOT provides an intelligent and elegant file recovery mechanism
using the redundant directory information in the record header.

If the file is not closed due to for example exceeded the time limit, and it is
opened again, it is scanned and rebuilt according to the information in the record
header. The recovery algorithm reads the file and creates the saved objects in
memory according to the header information. It then rebuilds the directory and
file structure.

If the file is opened in write mode, the recovery makes the correction on disk
when the file is closed; however if the file is opened in read mode, the correction
can not be written to disk. You can also explicitly invoke the recovery procedure
by calling the TFile: :Recover () method.

You must be aware of the 2GB size limit before you attempt a recovery. If the file
has reached this limit, you cannot add more data. You can still recover the
directory structure, but you cannot save what you just recovered to the file on
disk.

Here we interrupted and aborted the previous ROOT session, causing the file not
to be closed. When we start a new session and attempt to open the file, it gives
us an explanation and status on the recovery attempt.

root [] TFile f ("demo.root")

Warning in <TFile::TFile>: file demo.root probably not
closed, trying to recover

successfully recovered 15 keys

The Logical ROOT File: TFile and TKey

We saw that the TFile: :Map () method reads the file sequentially and prints
information about each record while scanning the file. It is not feasible to only
support sequential access and hence ROOT provides random or direct access,
i.e. reading a specified object at a time. To do so, TFile keeps a list of TKeys,
which is essentially an index to the objects in the file. The TKey class describes
the record headers of objects in the file. For example, we can get the list of keys

178 December 2001 - version 3.1d Input/Output

and print them. To find a specific object on the file we can use the
TFile: :Get () method.

root [] TFile f ("demo.root")

root [] f.GetListOfKeys ()->Print()

TKey Name = hO, Title = histo nr:0, Cycle =1
TKey Name = hl, Title = histo nr:1, Cycle =1
TKey Name = h2, Title = histo nr:2, Cycle =1
TKey Name = h3, Title = histo nr:3, Cycle =1
TKey Name = h4, Title = histo nr:4, Cycle =1
TKey Name = h5, Title = histo nr:5, Cycle =1
TKey Name = h6, Title = histo nr:6, Cycle =1
TKey Name = h7, Title = histo nr:7, Cycle =1
TKey Name = h8, Title = histo nr:8, Cycle =1
TKey Name = h9, Title = histo nr:9, Cycle =1
TKey Name = hl0, Title = histo nr:10, Cycle =1
TKey Name = hll, Title = histo nr:11, Cycle =1
TKey Name = hl2, Title = histo nr:12, Cycle = 1
TKey Name = hl3, Title = histo nr:13, Cycle = 1
TKey Name = hl4, Title = histo nr:14, Cycle =1
root [] THI1F *h9 = (TH1F*)f.Get("h9");

The TFile: :Get () finds the TKey object with name "h9". Using the TKey info
it will import in memory the object in the file at the file address #3352 (see the
output from the TFile: :Map above). This is done by the St reamer method that
is covered in detail in a later section.

Since the keys are available in a TList of TKeys we can iterate over the list of
keys:

TFile f("demo.root");
TIter next (f.GetListOfKeys());
TKey *key;
while ((key=(TKey*)next())) {
printf (
"key: %$s points to an object of class: %s at %d\n",
key->GetName (),
key->GetClassName () , key—->GetSeekKey ()
)

The output of this script is:

root [] .x iterate.C

key: hO0 points to an object of class: THIF at 150
key: hl points to an object of class: THIF at 503
key: h2 points to an object of class: THIF at 854
key: h3 points to an object of class: TH1F at 1194
key: h4 points to an object of class: THIF at 1539
key: h5 points to an object of class: TH1F at 1882
key: h6 points to an object of class: TH1F at 2240
key: h7 points to an object of class: TH1F at 2582
key: h8 points to an object of class: THIF at 2937
key: h9 points to an object of class: TH1F at 3293
key: hl0 points to an object of class: TH1F at 3639
key: hll points to an object of class: THIF at 3986
key: hl2 points to an object of class: TH1F at 4339
key: hl3 points to an object of class: THIF at 4694
key: hl4 points to an object of class: THIF at 5038

Input/Output December 2001 - version 3.1d 179

In addition to the list of keys, TFile also keeps two other lists:

TFile::fFreeis a TList of free blocks used to recycle freed up space in the

file. ROOT ftries to find the best free block. If a free block matches the size of the
new object to be stored, the object is written in the free block and this free block

is deleted from the list. If not, the first free block bigger than the object is used.

TFile::fListHead contains a sorted list (TSortedList) of objects in
memory.

The diagram below illustrates the logical view of the TFile and TKey.

ROOT File/Directory/Key description

TF | Ie 1Free = TList of free blocks
First:Last FirstLast |—>

Header

feys = TList of Keys

Key 0 Key1 |—p

fListHead = TSortable of Objects in memory

Object|-—|SubDir Object

-

LA P £
Eoras e 4
] L5t s e
= L i & (.r
L8, R 4
T 2t - i3 < 7
— : ~Key 0}
TModified: True if tirectory is madifed e % '
5 i)
fiWritable: True if directory is writable 2 5 5
. v
1DatimeC: Crealion DaterTime i i - £
,
_ L Object}—>
TDatimeM: Last mod Dale/Time . . 1
i o 1
THhytesKeys: Number of hytes of key I A 5
» s il
THhytesHame : Heauler lengilh up to litle i i i
:
13eekDir: Start of Directory on file s THhytes: Size of compressed Ohject
e TOhjLen: Size of uncompressed Object

T5eekMarent: Siart of Parent Directory I) .

P TDatime: DatefMime when wrilten 1o slore
TSeekKeys: Mointer Lo Keys record o TKeylen: Humber of bytes for the key

TCycle | Cycle number

13eekkey: Mointer 1o Object on file
13eekllir: Moinler to directory on file
TClazsName: TKey'

THame: Object name

1Tille: Object Title

180 December 2001 - version 3.1d Input/Output

Viewing the Logical File Contents

TFile is a descendent of TDirectory, which means it behaves like a
TDirectory. We can list the contents, print the name, and create
subdirectories. In a ROOT session, you are always in a directory and the
directory you are in is called the current directory and is stored in the global
variable ghirectory.

Let's look at a more detailed example of a ROOT file and its role as the current
directory. First, we create a ROOT file by executing a sample script.

root

[] .x $SROOTSYS/tutorials/hsimple.C

Now you should have hsimple. root in your directory. The file was closed by
the script so we have to open it again to work with it.

We open the file with the intent to update it, and list its contents.

root
root

KEY:
KEY:
KEY:
KEY:

TFile** hsimple.root
TFile* hsimple.root

[] TFile £ ("hsimple.root", "UPDATE")
[1 £.1s()

TH1F hpx;1 This is the px distribution
TH2F hpxpy;1l py vs px

TProfile hprof;1l Profile of pz versus px
TNtuple ntuple;1l Demo ntuple

It shows the two lines starting with TFi 1e followed by four lines starting with the
word "KEY". The four keys tell us that there are four objects on disk in this file.
The syntax of the listing is:

KEY:

<class> <variable>;<cycle number> <title>

For example, the first line in the list means there is an object in the file on disk,
called hpx. It is of the class TH1F (one-dimensional histogram of floating
numbers). The object's title is "This is the px distribution".

If the line starts with OBJ, the object is in memory. The <class> is the name of
the ROQOT class (T-something). The <variable> is the name of the object. The
cycle number along with the variable name uniquely identifies the object. The
<title> is the string given in the constructor of the object as title.

Input/Output

December 2001 - version 3.1d 181

This picture shows a TFile with five objects in the top directory (kObja; 1,
kObjA;2, kObjB;1, kObjC;1 and kObjD;1). ObjA is on file twice with two
different cycle numbers. It also shows four objects in memory (mObJjE,

mObjeF, mObjM, mObjlL). It also shows several subdirectories.

Cycle number
// | \\

//

.
.
(kObjA; 1)i/(kajAE} (koo 1) —{kObjD; Hk@bjc;]

(mOKM |—(mOBE |—{ mOBiL |—{mokoF)

.,

.

Legend
Objects on Disk

Objects in Memory
[
[MmOk

Directories

kKOG 1 kObiH; 1 - kOkil; 1 Subbir 1B

(kObiJ; 1)—(I{Otlan; 1)

SubDir |

The Current Directory

When you create a TFile object, it becomes the current directory. Therefore,
the last file to be opened is always the current directory. To check your current
directory you can type:

root[] gDirectory->pwd/()
Rint:/

This means that the current directory is the ROOT session (Rint). When you
create a file, and repeat the command the file becomes the current directory.

root[] TFile fl("AFilel.root");
root[] gDirectory->pwd()
AFilel.root:/

If you create two files, the last becomes the current directory.

root[] TFile f£2 ("AFile2.root");
root[] gDirectory->pwd()
AFile2.root:/

To switch back to the first file, or to switch to any file in general, you can use the
TDirectory: :cd method. The next command changes the current directory
back to the first file.

root [] £l.cd():;
root [] gDirectory->pwd()
AFilel.root:/

Note that even if you open the file in "READ" mode, it still becomes the current
directory.

182 December 2001 - version 3.1d Input/Output

CINT also offers a shortcut for gDirectory->pwd () and gDirectory->1s (),
you can type:

root [] .pwd
AFilel.root:/
root [] .1s
TFile** AFilel.root
TFile* AFilel.root
To return to the home directory, the one we were in before we opened any files:
root [] gROOT->cd()

(unsigned char)1l

root [] gROOT->pwd ()
Rint:/
Objects in Memory and Objects on Disk
The TFile: :1s () method has an option to list the objects on disk ("-d") or the
objects in memory ("-m"). If no option is given it lists both, first the objects in
memory, then the objects on disk. For example:
root [] TFile *f = new TFile("hsimple.root");
root [] gDirectory->ls("-m")
TEFile** hsimple.root
TFile* hsimple.root
Remember that ghirectory is the current directory and at this time is
equivalent to "£". This correctly states that no objects are in memory. The next
command lists the objects on disk in the current directory.
root [] gDirectory->1s("-d")
TFile** hsimple.root
TFile* hsimple.root
KEY: THIF hpx;1 This is the px distribution
KEY: TH2F hpxpy;1 py vs px
KEY: TProfile hprof;1l Profile of pz versus px
KEY: TNtuple ntuple;1l Demo ntuple

To bring an object from disk into memory, we have to use it or "Get" it explicitly.
When we use the object, ROOT gets it for us. Any reference to hprof will read it
from the file. For example drawing hprof will read it from the file and create an
object in memory. Here we draw the profile histogram, and then we list the
contents.

Input/Output

December 2001 - version 3.1d 183

root [] hprof->Draw ()

<TCanvas::MakeDefCanvas>: created default TCanvas with name
cl

root [] £->1s()

TFile** hsimple.root

TFile* hsimple.root

OBJ: TProfile hprof Profile of pz versus px : 0O
KEY: TH1F hpx;1 This is the px distribution
KEY: TH2F hpxpy;l py vs px

KEY: TProfile hprof;1l Profile of pz versus px
KEY: TNtuple ntuple;1 Demo ntuple

We now see a new line that starts with OBJ. This means that an object of class
TProfile, called hprof has been added in memory to this directory. This new
hprof in memory is independent from the hprof on disk. If we make changes to
the hprof in memory, they are not propagated to the hprof on disk. A new
version of hprof will be saved once we call Write.

You may wonder why hprof is added to the objects in the current directory.
hprof is of the class TProfile that inherits from TH1D, which inherits from
TH1. TH1 is the basic histogram. All histograms and trees are created in the
current directory (also see "Histograms and the Current Directory"). The
reference to "all histograms" includes objects of any class descending directly or
indirectly from TH1. Hence, our TProfile hprof is created in the current
directory f.

There was another side effect when we called the TH1 : : Draw method. CINT
printed this statement:

<TCanvas: :MakeDefCanvas>: created default TCanvas with name cl

It tells us that a TCanvas was created and it named it c1. This is where ROOT is
being nice, and it creates a canvas for drawing the histogram if no canvas was
named in the draw command, and if no active canvas exists.

The newly created canvas, however, is NOT listed in the contents of the current
directory. Why is that? The canvas is not added to the current directory, because
by default ONLY histograms and trees are added to the object list of the current
directory. Actually, TEventList objects are also added to the current directory,
but at this time, we don't have to worry about those.

If the canvas is not in the current directory then where is it? Because itis a
canvas, it was added to the list of canvases. This list can be obtained by the
command gROOT->GetListOfCanvases () ->1s (). The 1s () will print the
contents of the list. In our list, we have one canvas called c1. It has a TFrame, a
TProfile,and a TPaveStats

root [] gROOT->GetListOfCanvases ()->1s()
Canvas Name=cl Title=cl Option=
TCanvas fX1owNDC=0 fYlowNDC=0 fWNDC=1 fHNDC=1 Name= cl Title= cl
Option= TFrame X1= -4.000000 Y1=0.000000 X2=4.000000 Y2=19.384882
OBJ: TProfile hprof Profile of pz versus px : 0
TPaveText X1= -4.900000 Y1=20.475282 X2=-0.950000 Y2=21.686837 title
TPaveStats X1= 2.800000 Y1=17.446395 X2=4.800000 Y2=21.323371 stats

Lets proceed with our example and draw one more histogram, and we see one
more OBJ entry.

184 December 2001 - version 3.1d Input/Output

OBJ: TProfile
OBRJ: THI1F

root [] hpx->Draw()
root [] £->1s()
TFile** hsimple.root
TFile* hsimple.root
OBJ: TProfile hprof Profile of pz versus px 0
OBJ: THI1F hpx This is the px distribution 0
KEY: THLF hpx;1 This is the px distribution
KEY: TH2F hpxpy;1l py vs px
KEY: TProfile hprof;1l Profile of pz versus px
KEY:f TNtuple ntuple;l Demo ntuple
TFile::1s () loops over the list of objects in memory and the list of objects on
disk. In both cases, it calls the 1s () method of each object. The implementation
of the 1s method is specific to the class of the object, all of these objects are
descendants of TObject and inherit the TObject: : 1s () implementation. The
histogram classes are descendants of TNamed that in turn is a descent of
TObject. In this case, TNamed: : 1s () is executed, and it prints the name of the
class, and the name and title of the object.
Each directory keeps a list of its the objects in memory. You can get this list by
using TDirectory::GetList. To see the lists in memory contents you can:
root []f->GetList()->1s()

Profile of pz versus px 0
This is the px distribution

hprof
hpx

0

Since the file £ is the current directory (gDirectory), this will yield the same
result:

root

OBJ: TProfile
OBJ: THI1F

[] ghirectory->GetList()->1s()
hprof Profile of pz versus px 0

hpx This is the px distribution 0

Saving Histograms to Disk

At this time, the objects in memory (OBJ) are identical to the objects on disk
(KEY). Let's change that by adding a fill to the hpx we have in memory.

root

[] hpx->Fill (0)

Now the hpx in memory is different from the histogram (hpx) on disk.

Only one version of the object can be in memory, however, on disk we can store
multiple versions of the object. The TFile: :Write method will write the list of
objects in the current directory to disk. It will add a new version of hpx and
hprof.

Input/Output

December 2001 - version 3.1d 185

root [] f£->Write()

root [] £->1s()

TFile** hsimple.root

TFile* hsimple.root
OBJ: TProfile hprof Profile of pz versus px : O
OBJ: THI1F hpx This is the px distribution : 0
KEY: THLF hpx;2 This is the px distribution
KEY: THLF hpx;1 This is the px distribution
KEY: TH2F hpxpy;1l py vs px
KEY: TProfile hprof;2 Profile of pz versus px
KEY: TProfile hprof;1 Profile of pz versus px
KEY: TNtuple ntuple;l Demo ntuple

The TFile: :Write method wrote the entire list of objects in the current
directory to the file. You see that it added two new keys: hpx; 2 and hprof; 2 to
the file. Unlike memory, a file is capable of storing multiple objects with the same
name. Their cycle number, the number after the semicolon, differentiates objects
on disk with the same name.

This picture shows the file before and after the call to Wwrite.

hsirmple roo Legend
Chjects on Disk

hpx1 —{hpwpy:1 }—{hprof:1 —{ nfuple: 1)

'hﬁ (ﬁ\ Ohbjects in Memary
L——4 pX ———o hproaf | -
SR, — [mObie |

Directones

SukDirl

hsirmicls

o1 —{hewpy: 1—{ hprof: 1 }—{ ntuple:1)}—{ hpx2 }—{ hprof:2)
{ hproof

If you wanted to save only hpx to the file, but not the entire list of objects, you
could use the TH1 : :Write method of hpx:

root [] hpx->Write()

A call to obj->Write without any parameters will call obj->GetName () to find
the name of the object and use it to create a key with the same name. You can
specify a new name by giving it as a parameter to the Write method.

root [] hpx->Write ("newName")

If you want to re-write the same object, with the same key, use the overwrite
option.

186 December 2001 - version 3.1d Input/Output

root [] hpx->Write("", TObject::kOverwrite)

If you give a new name and use the kOverwrite, the object on disk with the
matching name is overwritten if such an object exists. If not, a new object with
the new name will be created.

root [] hpx->Write ("newName", TObject::kOverwrite)

The write method did not affect the objects in memory at all. However, if the file
is closed, the directory is emptied and the objects on the list are deleted.

root [] £->Close()

root [] £->1s()
TFile** hsimple.root
TFile* hsimple.root

In the code snipped above you can see that the directory is now empty. If you
followed along so far, you can see that c1 which was displaying hpx is how
blank. Furthermore, hpx no longer exists.

root [] hpx->Draw ()
Error: No symbol hpx in current scope

This is important to remember, do not close the file until you are done with the
objects or any attempt to reference the objects will fail.

Histograms and the Current Directory

When a histogram is created, it is added by default to the list of objects in the
current directory. You can get the list of histograms in a directory and retrieve a
pointer to a specific histogram.

TH1F *h = (TH1F*)gDirectory->Get ("myHist");
or
TH1F *h = (TH1F*)gDirectory->GetList ()->FindObject ("myHist")

The method TDirectory: :GetList () returns a TList of objects in the
directory.

You can change the directory of a histogram with the SetDirectory method.

h->SetDirectory (newDir)

If the parameter is 0, the histogram is no longer associated with a directory.

h->SetDirectory (0)

Once a histogram is removed from the directory, it will no longer be deleted when
the directory is closed. It is now your responsibility to delete this histogram object
once you are finished with it.

To change the default that automatically adds the histogram to the current
directory, you can call the static function:

TH1: :AddDirectory (kFALSE) ;

Input/Output December 2001 - version 3.1d 187

In this case, you will need to do all the bookkeeping for all the created
histograms.

Saving Objects to Disk

In addition to histograms and trees, you can save any object in a ROOT file. To
save a canvas to the ROOT file you can use Thirectory: :Write.

root [] TFile *f = new TFile("hsimple.root", "UPDATE")
root [] hpx->Draw()
<TCanvas::MakeDefCanvas>: created default TCanvas with name
cl
root [] cl->Write()
root [] £->1s()
TFile** hsimple.root
TFile* hsimple.root
OBJ: THIF hpx This is the px distribution : O
KEY: THIF hpx; 2 This is the px distribution
KEY: THLF hpx;1 This is the px distribution
KEY: TH2F hpxpy;1l py vs px
KEY: TProfile hprof;2 Profile of pz versus px
KEY: TProfile hprof;1 Profile of pz versus px
KEY: TNtuple ntuple;l Demo ntuple
KEY: TCanvas «cl;1 cl

Saving Collections to Disk

All collection classes inherit from TCollection and hence inherit the
TCollection: :Write method. When you call TCollection: :Write () each
object in the container is written individually into its own key in the file.

To write all objects into one key you can specify the name of the key and use the
TObject: :kSingleKey option. For example:

TList * list = new TList;

TNamed * nl, * n2;

nl = new TNamed("namel", "titlel");

n2 = new TNamed("name2", "title2");
list->Add (nl) ;

list->Add (n2) ;

list->Write("1list", TObject: :kSingleKey) ;

A TFile Object going Out of Scope

There is another important point to remember about TFile: :Close and

TFile::Write. When a variable is declared on the stack in a function such as
in the code below, it will be deleted when it goes out of scope.

void foo () {

}

TFile f ("AFile.root", "RECREATE");

As soon as the function foo has finished executing, the variable £ is deleted.
When a TFile object is deleted an implicit call to TFile: :Close is made. This
will save only the file descriptor to disk. It contains: the file header, the
StreamerInfo list, the key list, the free segment list, and the end address (see

188

December 2001 - version 3.1d Input/Output

"The Physical Layout of ROOT Files"). ATFile: :Close does not make a call to
Write, which means that the objects in memory will not be saved in the file.

You need to explicitly call TFile: :Write () to save the object in memory to file
before the exit of the function.

void foo () {

TFile f("AFile.root",
. stuff ..
f->Write();

"RECREATE") ;

To prevent an object in a function from being deleted when it goes out of scope,
you can create it on the heap instead of on the stack. This will create a TFile
object £, that is available on a global scope, and it will still be available when
exiting the function.

}

void foo () {

TFile *f = new TFile ("AFile.root", "RECREATE");

Retrieving Objects from Disk
If you have a ROOT session running, please quit and start fresh.

We saw that multiple versions of an object with the same name can be in a
ROOQOT file. In our example, we saved a modified histogram hpx to the file, which
resulted in two hpx ' s uniquely identified by the cycle number: hpx; 1 and

hpx; 2. The question is how do we retrieve the right version of hpx.

When opening the file and using hpx, CINT retrieves the one with the highest
cycle number.

To read the hpx; 1 into memory, rather than the hpx : 2 we would get by default,
we have to explicitly get it and assign it to a variable.

root
root
root

[] TFile *fl =
[] TH1F *hpxl =
[1] hpxl->Draw()

new TFile ("hsimple.root")
(TH1F*) f1->Get("hpx;1")

Subdirectories and Navigation

The TDirectory class lets you organize its contents into subdirectories, and
TFile being a descendent of TDirectory inherits this ability.

Here is an example of a ROOT file with multiple subdirectories as seen in the
ROOT browser.

Creating Subdirectories

To add a subdirectory to a file use Directory: :mkdir.

Input/Output

December 2001 - version 3.1d 189

The example below opens the file for writing and creates a subdirectory called
"Wed011003". Listing the contents of the file shows the new directory in the file
and the TDirectory object in memory.

root [] TFile *f = new TFile ("AFile.root","RECREATE")
root [] £->mkdir ("Wed011003")
(class TDhirectory*)0x1072b5c8

root [] £->1s()

TFile** AFile.root

TFile* AFile.root
TDirectory* Wed011003 Wed011003
KEY: TDirectory Wed011003;1 Wed011003

Navigating to Subdirectories

We can change the current directory by navigating into the subdirectory, and
after changing directory; we can see that gbirectory is now "Wed011003".

root [] £->cd("Wed011003")
root [] gDirectory->pwd()
AFile.root:/Wed011003

In addition to gbirectory we have gFile, another global that points to the
current file.

In our example, gbhirectory points to the subdirectory, and gFile points to the
file (i.e. the files' top directory).

root [] gFile->pwd()
AFile.root:/

To return to the file's top directory, use cd () without any arguments.

root [] £->cd()
AFile.root:/

Change to the subdirectory again, and create a histogram. It is added to the
current directory, which is the subdirectory "Wwed011003".

root [] £->cd("Wed011003")

root [] TH1F *histo=new TH1F("histo","histo",10,0, 10);
root [] gDirectory->1s()

TDirectory* Wed011003 Wed011003

OBJ: THLF histo histo : 0

If you are in a subdirectory and you would like to have a pointer to the file
containing the subdirectory, you can do so:

root [] gDirectory->GetFile()

If you are in the top directory gDirectory is the same as gFile.

We write the file to save the histogram on disk, to show you how to retrieve it
later.

190 December 2001 - version 3.1d Input/Output

root [] £->Write()

root [] gDirectory->1s()

TDirectory* Wed011003 Wed011003

OBRJ: THI1F histo histo : 0

KEY: THI1F histo;1 histo
When retrieving an object from a subdirectory, you can navigate to the
subdirectory first or give it the path name relative to the file. The read object is
created in memory in the current directory.
In this first example, we get histo from the top directory and the object will be in
the top directory.

root [] TH1 *h = (TH1*) f->Get("Wed011003/histo;1")
If file is written, a copy of histo will be in the top directory. This is an effective
way to copy an object from one directory to another.
In contrast, in the code box below, histo will be in memory in the subdirectory
because we changed the current directory.

root [] £->cd("Wed011003");

root [] TH1 *h = (TH1*) gDirectory->Get("histo;1")
Note that there is no warning if the retrieving was not successful. You need to
explicitly check the value of h, and if it is null, the object could not be found. For
example, if you did not give the path name the histogram cannot be found and
the pointer to h is null:

root [] TH1 *h =(THl*)gDirectory->Get ("Wed011003/histo;1")

root [] h

(class TH1*)0x10767de0

root [] TH1 *h = (TH1*) gDirectory->Get("histo;1")

root [] h

(class TH1*)0x0

Removing Subdirectories

To remove a subdirectory you need to use TDirectory: :Delete. Thereis no
TDirectory: :rmdir. The Delete method takes a string containing the variable
name and cycle number as a parameter.

void Delete(const char *namecycle)

The namecycle string has the format name; cycle. Here are some rules to
remember:

- name = % means all, but don't remove the subdirectories
- cycle = * means all cycles (memory and file)

- cycle = ™ means apply to a memory object

- cycle = 9999 also means apply to a memory object

- namecycle = means the same as namecycle ="T*"
- namecycle =T* delete subdirectories

For example to delete a directory from a file, you must specify the directory cycle,

Input/Output

December 2001 - version 3.1d 191

root [] f£->Delete("Wed011003;1")

Some other examples of namecycle format are:

e foo: delete the object named foo from memory

e foo; 1: delete the cycle 1 of the object named foo from the file

e foo; *: delete all cycles of foo from the file and also from memory

e *;2: delete all objects with cycle number 2 from the file

e *;*: delete all objects from memory and from the file

e Tx*;*: delete all objects from memory and from the file including all
subdirectories

Streamers

To follow the discussion on Streamers, you need to know what a simple data
type is. A variable is of a simple data type if it cannot be decomposed into other
types. Examples of simple data types are longs, shorts, floats, and chars. In
contrast, a variable is of a composite data type if it can be decomposed. For
example, classes, structures, and arrays are composite types. Simple types are
also called primitive types, basic types, and CINT sometimes calls them
fundamental types.

When we say, "writing an object to a file", we actually mean writing the current
values of the data members. The most common way to do this is to decompose
(also called the serialization of) the object into its data members and write them
to disk. The decomposition is the job of the Streamer. Every class with ambitions
to be stored in a file has a Streamer that decomposes it and "streams" its
members into a buffer.

The methods of the class are not written to the file, it contains only the persistent
data members.

To decompose the parent classes, the Streamer calls the Streamer of the parent
classes. It moves up the inheritance tree until it reaches an ancestor without a
parent.

To serialize the object data members it calls their Streamer. They in turn move
up their own inheritance tree and so forth.

The simple data members are written to the buffer directly. Eventually the buffer
contains all simple data members of all the classes that make up this particular
object.

Streaming Pointers

An object pointer data member presents a challenge to the streaming software. If
the object pointed to is saved every time it could create circular dependencies
and consume large amounts of disk space. The network of references must be
preserved on disk and recreated upon reading the file.

When ROOT encounters a pointer data member it calls the streamer of the
object and labels it with a unique object identifier. The object identifier is unique
for one I/O operation. If there is another reference to the object in the same 1/0
operation, the first object only referenced by its ID, it is not saved again.

192 December 2001 - version 3.1d Input/Output

When reading the file, the object is rebuilt and the references recalculated. In this
way, the network of pointers and their objects is rebuilt and ready to use the
same way it was used before it was persistent.

obj_B _ TFile

A write
obj_B(obj_A,ID), obj_C(ID)

read

obj_A

Automatically Generated Streamers

A Streamer usually calls other Streamers: the Streamer of its parents and data
members. This architecture depends on all classes having Streamers, because
eventually they will be called. To ensure that a class has a Streamer, rootcint
automatically creates one in the ClassDef macro which is defined in
SROOTSYS/include/Rtypes.h. ClassDef defines several methods for any
class, and one of them is the Streamer. The automatically generated Streamer is
complete and can be used as long as no customization is needed.

The Event class is defined in SROOTSYS/test/Event.h. Looking at the class
definition, we find that it inherits from TObject. Itis a simple example of a class
with diverse data members.

class Event : public TObject {
private:
TDirectory *fTransient; //! current directory
Float t fPt; //! transient value
char fType[20];
Int t fNtrack;
Int t fNseg;
Int t fNvertex;
UInt t fFlag;
Float t fTemperature;
EventHeader fEvtHdr; //1| don't split
TClonesArray *fTracks; //->
TH1F *fH; //->
Int t fMeasures[10];
Float t fMatrix[4][4]1;
Float t *fClosestDistance; //[fNvertex]

Input/Output December 2001 - version 3.1d 193

The Event class is added to the CINT dictionary by the rootcint utility. This is
the rootcint statementin the SROOTSYS/test/Makefile:

@rootcint -f EventDict.cxx -c Event.h EventLinkDef.h

The EventDict.cxx file contains the automatically generated Streamer for
Event:

void Event::Streamer (TBuffer &R_b)
{

// Stream an object of class Event.

if (R__b.IsReading()) {
Event::Class () ->ReadBuffer (R b, this);
} else {

Event::Class () ->WriteBuffer(R__b, this);
}

When writing an Event object, TClass: :WriteBuffer is called.
WriteBuf fer writes the current version number of the Event class, andits
contents into the bufferR b .

The Streamer calls TClass: :ReadBuf fer when reading an Event object. The
ReadBuffer method reads the information from buffer R b into the Event
object.

Transient Data Members (//!)

To prevent a data member from being written to the file, insert a "!" as the first
character after the comment marks. For example, in this version of Event, the
fPt and fTransient data members are not persistent.

class Event : public TObject {

private:
TDirectory *fTransient; //! current directory
Float t fPt; //! transient value

The Pointer To Objects (/->)

The string "->" in the comment field of the members *fH and *fTracks instruct
the automatic Streamer to assume these will never be null and the Streamer of
the objects can be called rather than the more expensive R b << fH.

TClonesArray *fTracks; //->
TH1F *fH; //->

Variable Length Array

When the Streamer comes across a pointer to a simple type, it assumes it is an
array. Somehow, it has to know how many elements are in the array to reserve
enough space in the buffer and write out the appropriate number of elements.
This is done in the class definition.

194

December 2001 - version 3.1d Input/Output

For example:

class Event : public TObject {

private:
char fType[20];
Int t fNtrack;
Int t fNseg;
Int t fNvertex;
Float t *fClosestDistance; // [fNvertex]

The array fClosestDistance is defined as a pointer of floating point numbers.
A comment mark (/) , and the number in square brackets tell the Streamer the
length of the array for this object. In general the syntax is:

<simple type> *<name> //[<length>]

The length cannot be an expression. If a variable is used, it needs to be an
integer data member of the class. It must be defined ahead of its use, or in a
base class.

Prevent Splitting (/||)

If you want to prevent a data member from being split when writing it to a tree
append the characters || right after the comment string. This only makes sense
for object data members. For example:

EventHeader fEvtHdr; //1| do not split the header

Streamers With Special Additions

Most of the time you can let rootcint generate a Streamer for you. However
if you want to write your own Streamer you can do so.

For some classes, it may be necessary to execute some code before or after the
read or write block in the automatic Streamer. For example after the execution of
the read block, one can initialize some non persistent members.

There are two reasons why you would need to write your own Streamer. If you
have a complex STL container type data member that is not yet supported by
ROOQOT, or if you have a non-persistent data member that you want to initialize to
a value depending on the read data members. In addition, the automatic
Streamer does not support C-structures. It is best to convert the structure to a
class definition.

First, you need to tell rootcint not to build a Streamer for you. The input to the
rootcint command (in the makefile)is a list of classes in a LinkDef . h file.
For example, the list of classes for Event are listed in
SROOTSYS/test/EventLinkDef.h. The "-" at the end of the class name tells
rootcint not to generate a Streamer. In the example, you can see the Event
class is the only one for which rootcint is instructed not to generate a
Streamer.

Input/Output

December 2001 - version 3.1d 195

#ifdef CINT

#pragma link off all globals;
#pragma link off all classes;
#pragma link off all functions;

#pragma link C++ class EventHeader+;
#pragma link C++ class Event-;

#fpragma link C++ class HistogramManager+;
#pragma link C++ class Track+;

#endif
#pragma link C++ class EventHeader+;

The "+" sign tells rootcint to use the new Streamer system introduced in ROOT
3.0.

This is an example of a customized Streamer for Event:

The Streamer takes a TBuffer as a parameter, and first checks to see if this is
a case of reading or writing the buffer.

void Event::Streamer (TBuffer &R _ D)
{
if (R__b.IsReading()) {
Event::Class () ->ReadBuffer (R__b, this);
fTransient = gDirectory; //save current directory
fPt= TMath::Sqrt (fPx*fPx + fPy*fPy + fPz*fPz);
} else {
Event::Class () ->WriteBuffer (R__ Db, this);
}

Writing Objects

The streamer decomposes the objects into data members and writes them to a
buffer. It does not write the buffer to a file, it simply populates a buffer with bytes
representing the object. This allows us to write the buffer to a file or do anything
else we could do with the buffer. For example, we can write it to a socket to send
it over the network. This is beyond the scope of this chapter, but it is worthwhile
to emphasize the need and advantage of separating the creation of the buffer
from its use. Let's look how a buffer is written to a file.

A class needs to inherit from TObject or use TDirectory->Write (obj) to
be saved to disk. However, a class that is a data member of another class does
not have to inherit from TObject, it only has to have a Streamer. EventHeader
is an example of such a case.

The TObject: :Write method does the following:

1. Creates a TKey object in the current directory

2. Creates a TBuf fer object which is part of the newly created TKey

3. Fills the TBuffer with a call to the class: : Streamer method

4. Creates a second buffer for compression, if needed

5. Reserves space by scanning the TFree list. At this point, the size of
the buffer is known.

6. Writes the buffer to the file

7. Releases the TBuf fer part of the key

196 December 2001 - version 3.1d Input/Output

In other words, the TObject: :Write calls the Streamer method of the class to
build the buffer. The buffer is in the key and the key is written to disk. Once
written to disk the memory consumed by the buffer part is released. The key part
of the TKey is kept. The key consumes about 60 bytes, where the buffer since it
contains the object data can be very large.

This is a diagram of a streamed TH1F in the buffer:

(TH1F (TH1 (TNamed) (TAttLine) (TAttMarker) (TAxis (TNamed) (TAttAXis)) (TAxis (TNamed) (TAtAXis)) (TAxis (TNamed) (TAttAxis)))(TArrayF))

THIF

THI ThrrayF

TNemed | | TAtLing | TAtMarker || TAXis Thxis Thxis

TNamed ThttAxis TNamed ThttAis TNamed ThttAxis

Ignore Object Streamers

You can instruct your class to ignore the TObject Streamer with the
MyClass::Class::IgnoreTObjectStreamer method. When the class
kIgnoreTObjectStreamer bitis set (by calling the
IgnoreTObjectStreamer method), the automatically generated Streamer
will not call TObject: :Streamer, and the TObject part of the class is not
streamed to the file. This is useful in case you do not use the TObject fBits
and fUniqueID data members. You gain space on the file, and you do not
loose functionality if you do not use the fBits and fUniqueID (see the section
on TObject on the use of fBits and fUniquelID).

Streaming a TClonesArray

When writing a TClonesArray it bypasses by default the Streamer of the
member class and uses a more efficient internal mechanism to write the
members to the file.

You can override the default and specify that the member class Streamer is used
by setting the TConesArray: :BypassStreamer bit to false:

TClonesArray *fTracks;
fTracks->BypassStreamer (kFALSE); // use the member Streamer

When the kBypassStreamer bit is set, the automatically generated Streamer
cancall TClass: :WriteBuffer directly. Bypassing the Streamer improves
the performance when writing/reading the objects in the TClonesArray.
However, the drawback is: when a TClonesArray is written with split=0
bypassing the Streamer, the StreamerInfo of the class in the array being
optimized, one cannot later use the TClonesArray with split>0.

For example, there is a problem with the following scenario:

1- aclass Foo has a TClonesArray of Bar objects

Input/Output December 2001 - version 3.1d 197

2-

the Foo object is written with sp1it=0to Tree T1.

In this case the streamerInfo for the class Bar is created in optimized
mode in such a way that data members of the same type are written as
an array improving the I/O performance.

in a new program, T1 isread and a new Tree T2 is created with the
object Foo in split>1.

When the T2 branch is created, the StreamerInfo for the class Bar is
created with no optimization (mandatory for the split mode). The
optimized Bar StreamerInfo is going to be used to read the
TClonesArray in T1. The result will be Bar objects with data member
values not in the right sequence. The solution to this problem is to call
BypassStreamer (kFALSE) for the TClonesArray. In this case, the
normal Bar: : Streamer function will be called. The BAR: : Streamer
function works OK independently if the Bar StreamerInfo had been
generated in optimized mode or not.

198

December 2001 - version 3.1d Input/Output

Schema Evolution

Schema evolution is a problem faced by long-lived data. When a schema
changes, existing persistent data can become inaccessible unless the system
provides a mechanism to access data created with previous versions of the
schema.

In the lifetime of a collaboration, the class definitions (i.e. the schema) are likely
to change frequently. Not only can the class itself change, but any of its parent
classes or data member classes can change also. This makes the support for
schema evolution necessary.

ROOT fully supports schema evolution. The diagram below illustrates some of
the scenarios.

The top half represents different versions of the shared library with the class
definitions. These are the in-memory class versions.

The bottom half represents data files that contain different versions of the

classes.
Shared Lib v1 Shared Lib Shared Lib v7 MakeProject
A4 Missing

File 1 File 2 File 3
A, A, |
B, B,
C, C,

1) An old version of a shared library and a file with new class definitions. This
can be the case when someone has not updated the library and is reading a
new file.

2) Reading a file with a shared library that is missing a class definition (i.e.
missing class D).

3) Reading a file without any class definitions. This can be the case where the
class definition is lost, or unavailable.

4) The current version of a shared library and an old file with old class versions
(backward compatibility). This is often the case when reading old data.

Input/Output December 2001 - version 3.1d 199

5) Reading a file with a shared library built with MakeProject. This is the case
when someone has already read the data without a shared library and has
used ROOT's MakeProject feature to reconstruct the class definitions and
shared library (MakeProject is explained in detail later on).

In case of a mismatch between the in-memory version and the persistent version
of a class, ROOT maps the persistent one to the one in memory. This allows you
to change the class definition at will, for example:

1) Change the order of data members in the class.

2) Add new data members. By default the value of the missing member will be 0
or in case of an object it will be set to null.

3) Remove data members.
4) Move a data member to a base class or vice —versa.

5) Change the type of a member if it is a simple type or a pointer to a simple
type. If a loss of precision occurs, a warning is given.

6) Add or remove a base class

Persistent In-memory

Class A v4: Class B— 6 > Class Av6: Class B, Class C

int a \\1\\ 2 My Cla/SS/*W B
ntb @ L @Ml
float f T tE
MyClass’e 4 double d

floatd 5, MyClass“g
MyClass*g

ROOT supports schema evolution by keeping a class description of each version
of the class that was ever written to disk, with the class. When it writes an object
to file, it also writes the description of the current class version along with it. This
description is implemented in the StreamerInfo class.

The Streamerinfo Class

Each class has a list of St reamerInfo objects, one for each version of the
class if that version was written to disk at least once. When reading an object
from a file, the system uses the StreamerInfo list to decode an object into the
current version.

The StreamerInfo is made up of StreamerInfoElements . Each describes
one persistent data member of the class.

By default all data members of a class are persistent. To exclude a data member
(i.e. make it not persistent), add a "!" after the comment marks.

200 December 2001 - version 3.1d Input/Output

For example the pointer *fPainter of a TH1 is not persistent:

TVirtualHistPainter* fPainter //!pointer to histogram painter

Example: TH1 Streamerinfo

In the StreamerInfo of the TH1 class we see the four base classes: TNamed,
TAttLine, TAttFill, and TAttMarker. These are followed by a list of
the data members. Each data member is implemented by a
StreamerInfoElement.

root [] TH1l::Class () ->GetStreamerInfo ()->1s()
StreamerInfo for class: TH1l, version=3

BASE TNamed offset= 0 type=67 The basis for a named object
BASE TAttLine offset= 28 type= 0 Line attributes
BASE TAttFill offset= 40 type= 0 Fill area attributes
BASE TAttMarker offset= 48 type= 0 Marker attributes
Int t fNcells offset= 60 type= 3 number of bins (1D
TAxis fXaxis offset= 64 type=61 X axis descriptor
TAxis fYaxis offset=192 type=61 Y axis descriptor
TAxis fZaxis offset=320 type=61 Z axis descriptor
Short t fBarOffset offset=448 type= 2 (1000*offset)for bar charts or legos
Short_t fBarWidth offset=450 type= 2 (1000*width) for bar charts or legos
Stat_t fEntries offset=452 type= 8 Number of entries
Stat_t fTsumw offset=460 type= 8 Total Sum of weights
Stat t fTsumw?2 offset=468 type= 8 Total Sum of squares of weights
Stat t fTsumwx offset=476 type= 8 Total Sum of weight*X
Stat_t fTsumwx?2 offset=484 type= 8 Total Sum of weight*X*X
Double t fMaximum offset=492 type= 8 Maximum value for plotting
Double t fMinimum offset=500 type= 8 Minimum value for plotting
Double t fNormFactor offset=508 type= 8 Normalization factor
TArrayD fContour offset=516 type=62 Array to display contour levels
TArrayD fSumw?2 offset=528 type=62 Array of sum of squares of weights
TString fOption offset=540 type=65 histogram options
TList* fFunctions offset=548 type=63 ->Pointer to list of functions
i= 0, TNamed type= 67, offset= 0, len=1, method=0
i= 1, TAttLine type= 0, offset= 28, len=1, method=142484480
i= 2, TAttFill type= 0, offset= 40, len=1, method=142496992
i= 3, TAttMarker type= 0, offset= 48, len=1, method=142509704
i= 4, fNcells type= 3, offset= 60, len=1, method=0
i= 5, fXaxis type= 61, offset= 64, len=1, method=1081287424
i= 6, fYaxis type= 61, offset=192, len=1, method=1081287548
i= 7, fZaxis type= 61, offset=320, len=1, method=1081287676
i= 8, fBarOffset type= 22, offset=448, len=2, method=0
i= 9, fEntries type= 28, offset=452, len=8, method=0
i=10, fContour type= 62, offset=516, len=1, method=1081287804
i=11, fSumw2 type= 62, offset=528, len=1, method=1081287924
i=12, fOption type= 65, offset=540, len=1, method=1081288044
i=13, fFunctions type= 63, offset=548, len=1, method=1081288164

The StreamerinfoElement Class

A StreamerInfoElement describes a data member of a simple type, object,
array, pointer, or container.

The offset in the StreamerInfoElement is the starting address of the data for
that data member.

BASE TNamed offset= 0 type=67 The basis for a named object
BASE TAttLine offset= 28 type= 0 Line attributes

Input/Output December 2001 - version 3.1d 201

In this example, the TNamed data starts at byte 0, and TAttLine starts at byte
28. The offset is machine and compiler dependent and is computed when the
StreamerInfo is analyzed. The TClass: :GetStreamerInfo method
analyzes the StreamerInfo the same way it would be analyzed by referring to
the class. While analyzing the StreamerInfo, it computes the offsets.

The type field is the type of the StreamerInfoElement. Itis specific to the
StreamerInfo definition. The types are defined in the file StreamerInfo.h
and listed below:

enum EReadWrite {

kBase = 0, kOffsetlL = 20, kOffsetP = 40, kCounter = 6,
kChar = 1, kShort = 2, kInt = 3, kLong = 4,
kFloat= 5, kDouble = 8, kUChar = 11, kUShort = 12,
kUInt = 13, kULong = 14, kObject = 61, kAny = 62,
kObjectp = 63, kObjectP = 64, kTString = 65,
kTObject = 66,

kTNamed = 67, kMissing = 99999, kSkip = 100,
kSkipL = 120, kSkipP = 140, kConv = 200,
kConvL = 220, kConvP = 240, kStreamer = 500,
kStreamLoop = 501s

bi

Optimized Streamerinfo

The entries starting with "1 = 0" is the optimized format of the StreamerInfo.
Consecutive data members of the same simple type and size are collapsed and
read at once into an array for performance optimization.

i= 0, TNamed type= 67, offset= 0, len=1, method=0

i= 1, TAttLine type= 0, offset= 28, len=1, method=142484480

i= 2, TAttFill type= 0, offset= 40, len=1, method=142496992

i= 3, TAttMarker type= 0, offset= 48, len=1, method=142509704
For example, the five data members beginning with fEnties and the three data
members beginning with fMaximum, are put into an array called fEntries (i =
9) with the length 8.

i= 9, fEntries type= 28, offset=452, len=8, method=0

Only simple type data members are combined, object data members are not
combined. For example the three axis data members remain separate.

The "method" is a handle to the method that reads the object.

Automatic Schema Evolution

When a class is defined in ROOT, it must include the C1assDef macro as the
last line in the header file inside the class definition. The syntax is:

ClassDef (<ClassName>,<VersionNumber>)

The version number identifies this particular version of the class. The version
number is written to the file in the Streamer by the call
TBuffer::WriteVersion. You, as the designer of the class, do not need to
do any manual modification in the Streamer. ROOT's schema evolution
mechanism is automatic and handled by the StreamerInfo.

202

December 2001 - version 3.1d Input/Output

Manual Schema Evolution

If you have written your own Streamer as described in the section "Streamers
With Special Additions", you will have to manually add code for each version and
manage the evolution of your class.

When you add or remove data members, you must modify the Streamer by hand.
ROOT assumes that you have increased the class version number in the
ClassDef statement and introduced the relevant test in the read part of the
Streamer.

For example, if a new version of the Event class above includes a new member:
Int t fNew the ClassDef statement should be changed to

ClassDef (Event, 2) and the following lines should be added to the read part
of the Streamer:

if

} else {

}

(R_v > 1) {
R b >> fNew;

fNew = 0; // set to some default value

If, in the same new version 2 you remove the member £H, you must add the
following code to read the histogram object into some temporary object and
delete it:

if

(R_v) < 2 |
TH1F *dummy = 0;
R b >> dummy;
delete dummy;

Our experience with manual schema evolution shows that it is easy to make and
mismatches between Streamer writers and readers are frequent and increase as
the number of classes increases.

We recommend you use rootcint generated Streamers whenever you can, and
profit from the automatic schema evolution.

Building Class Definitions With The Streamerinfo

A ROQOT file's streamerInfo list contains the description of all versions of all
classes in the file. When a file is opened the StreamerInfo is read into
memory and it provides enough information to make the file brows able.

The StreamerInfo enables us to recreate a header file for the class in case the
compiled class is not available. This is done with the TFile: :MakeProject
method. It creates a directory with the header files for the named classes and a
makefile to compile a shared library with the class definitions.

Example: MakeProject

To explain the details, we use the example of the ATLFast project which is a
fast simulation for the ATLAS experiment. The complete source for ATLFast can
be down loaded at: ftp://root.cern.ch/root/atlfast.tar.gz .

Once we compile and run ATLFast we get a ROOT file called at1fast.root,
containing the ATLFast objects.

When we open the file, we get a warning that the file contains classes that are
not in the CINT dictionary. This is correct since we did not load the class

Input/Output

December 2001 - version 3.1d 203

definitions.

root [] TFile f("atlfast.root")

Warning in <TClass::TClass>: no dictionary for class TMCParticle is available
Warning in <TClass::TClass>: no dictionary for class ATLFMuon is available

We can see the StreamerInfo for the classes:

root[] £.ShowStreamerInfo ()

StreamerInfo for class: ATLFMuon, version=1

BASE TObject offset= 0 type=66 Basic ROOT object

BASE TAtt3D offset= 0 type= 0 3D attributes

Int t m_KFcode offset= 0 type= 3 Muon KF-code

Int t m MCParticle offset= 0 type= 3 Muon position in MCParticles list

Int t m_KFmother offset= 0 type= 3 Muon mother KF-code
Int t m UseFlag offset= 0 type= 3 Muon energy usage flag
Int t m_Isolated offset= 0 type= 3 Muon isolation (1 for isolated)
0 5
0 5
0 5
0 3

Float_t m Eta offset= type= Eta coordinate
Float t m_Phi offset= type= Phi coordinate
Float t m PT offset= type= Transverse energy

Int t m Trigger offset= type= Result of trigger

However, when we try to use a specific class, we get a warning because the
class is not in the CINT dictionary.

We can create a Class using grROOT->GetClass, which makes a fake class
from the StreamerInfo.

// Build a 'fake' class
root [] gROOT->GetClass ("ATLFMuon")
(const class TClass*)0x87e5c08

// The fake class has a StreamerInfo

root [] gROOT->GetClass ("ATLFMuon")->GetStreamerInfo ()->1s()
StreamerInfo for class: ATLFMuon, version=1

BASE TObject offset= 0 type=66 Basic ROOT object
BASE TAtt3D offset= 0 type= 0 3D attributes
Int_t m_KFcode offset= 16 type= 3 Muon KF-code
Int t m MCParticle offset= 20 type= 3 Muon position in

MCParticles list

Int t m_KFmother offset= 24 type= 3 Muon mother KF-code
Int t m UseFlag offset= 28 type= 3 Muon energy usage flag
Int_t m_Isolated offset= 32 type= 3 Muon isolation
Float_t m_Eta offset= 36 type= 5 Eta coordinate
Float t m_Phi offset= 40 type= 5 Phi coordinate
Float_t m_PT offset= 44 type= 5 Transverse energy
Int t m Trigger offset= 48 type= 3 Result of trigger
i= 0, TObject type= 66, offset= 0, len=1, method=0

i= 1, TAtt3D type= 0, offset= 0, len=1, method=142684688
i= 2, m_KFcode type= 23, offset= 16, len=5, method=0

i= 3, m Eta type= 25, offset= 36, len=3, method=0

i= 4, m Trigger type= 3, offset= 48, len=1, method=0

MakeProject has three parameters:

MakeProject (const char *dirname, const char *classes, Option t *option)

The first is the directory name in which to place the generated header files.

The second parameter is the name of the classes to include in the project. By
default all classes are included. It recognizes the wild card character *, for
example: "ATLF*" includes all classes beginning with ATLF.

The third parameter is an option with the following values:

204

December 2001 - version 3.1d Input/Output

. new" :
. "recreate":

e "update":
° ll+l|
° II++I|:

If the directory does not exist, it is created.

If the directory does not exist, it is creates as in "new", in addition
if the directory does exist, all existing files are deleted before
creating the new files.

The new classes are added to the existing directory and the
existing classes are replaced with the new definition. If the
directory does not exist, it creates it as in "new".

This option can be used in combination with the other three. It
will create the necessary files to easily build a shared library
containing the class definitions. Specifically it will:

Generate a script called MAKE that builds the shared library
containing the definition of all classes in the directory.
Generate a LinkDef.h files to use with rootcint in MAKE.
Run rootcint to generate a <dirname>ProjectDict.cxx file
Compile the <dirname>ProjectDict.cxx with the current
options in compiledata.h.

Build a shared library <dirname>.so.

This option can be used instead of the single "+" . It does
everything the single "+" does, and dynamically loads the shared
library <dirname>.so.

This example, makes a directory called MyProject that will contain all class
definition from the at1fast. root file. The necessary makefile to build a shared
library are also created, and since the '++' is appended, the shared library is also

loaded.

root [] f.MakeProj
MakeProject has ge
MyProject/MAKE fil
Shared 1lib MyProje
Shared 1lib MyProje

ect ("MyProject","*", "recreate++")

nerated 0 classes in MyProject

e has been generated

ct/MyProject.so has been generated
ct/MyProject.so has been dynamically linked

The contents of

root [] .! 1ls MyPr
ATLFCluster.h
ATLFTrack.h
ATLFClusterMaker.h
ATLFTrackMaker.h
ATLFElectron.h
ATLFTrigger.h
ATLFElectronMaker.
ATLFTriggerMaker.h
ATLFHistBrowser.h
LinkDef.h

MyProject:

oject
ATLFJet.h ATLFMiscMaker.h
MAKE TMCParticle.h

ATLFJetMaker.h ATLFMuon.h
MyProject.so

ATLFMCMaker.h ATLFMuonMaker.h
MyProjectProjectDict.cxx

h ATLFMaker.h ATLFPhoton.h
MyProjectProjectDict.h
ATLFMisc.h ATLFPhotonMaker.h

MyProjectProjectDict.o

Now you can load the shared library in any consecutive root session to use the
atlfast classes.

root [] gSystem->L

root [] ATLFMuon muon

oad ("MyProject/MyProject")

Input/Output

December 2001 - version 3.1d 205

This is an example of a generated header file:

L177777777777777777/7/777/777/77///77//7////7///77/7/7/7/77/
// This class has been generated by TFile::MakeProject
// (Thu Apr 5 10:18:37 2001 by ROOT version 3.00/06)
// from the StreamerInfo in file atlfast.root
L177777777777777777/7/777/777/77///77//7////7///77//777/7/

#ifndef ATLFMuon h
#define ATLFMuon h

#include "TObject.h"
#include "TAtt3D.h"

class ATLFMuon : public TObject , public TAtt3D ({

public:
Int t m_KFcode; //Muon KF-code
Int t m MCParticle; //Muon position in MCParticles list
Int t m_KFmother; //Muon mother KF-code
Int t m UseFlag; //Muon energy usage flag
Int t m Isolated; //Muon isolation (1 for isolated)
Float t m Eta; //Eta coordinate
Float t m_Phi; //Phi coordinate
Float t m_PT; //Transverse energy
Int t m Trigger; //Result of trigger

ATLFMuon () {;}
virtual ~ATLFMuon () {;}

ClassDef (ATLFMuon,1l) //
}s

ClassImp (ATLFMuon)
#endif

206

December 2001 - version 3.1d Input/Output

Migrating to ROOT 3

We will distinguish the following cases:

Case A: You have your own Streamer method in your class implementation file.
This also means that you have specified MyClass- in the LinkDef . h file.

keep MyClass- unchanged

e Increment your class version id in ClassDef by 1, e.g.
ClassDef (MyClass, 2)

e Change your streamer function in the following way: The old write block
can be replaced by the new standard Write. Change the read block to use
the new scheme for the new versions and the old code for the old versions.

{

void MyClass::Streamer (TBuffer &R b)

// process old versions before automatic schema evolution

// end of old versions

// Stream an object of class MyClass.
if (R__Db.IsReading() {
UInt t R s, R ¢
Version t R v =
if (R v > 1) {
MyClass::Class () ->ReadBuffer(R__b, this, R v, R s, R c);

return;

}

)
R b.ReadVersion(&R s, &R c);

R b >> xxxx;
R b > .. etc
R b.CheckByteCount(R s, R ¢, MyClass::IsA());

} else {
MyClass::Class () ->WriteBuffer (R b, this);

}

Case B: You use the automatic streamer in the dictionary file.

e Move the old Streamer from the file generated by rootcint to your class
implementation file, then modify the Streamer function as in Case A above.
e Increment your class version id in ClassDef by 1, for example
ClassDef (MyClass, 2)
e Add option "-" in the pragma line of LinkDef.

Case C: You use the automatic streamer in the dictionary file and you already
use the option "+" in the LinkDef file. If the old automatic Streamer does not
contain any statement using the function WwriteArray, you have nothing to do,
except running rootcint again to regenerate the new form of the Streamer
function, otherwise proceed like for case B.

Input/Output

December 2001 - version 3.1d 207

Compression and Performance

ROOT uses a compression algorithm based on the well-known gzip algorithm. It
supports nine levels of compression. The default for ROOT is one.

The compression level can be set with the method
TFile::SetCompressionLevel. Experience with this algorithm shows that a
compression level of 1.3 for raw data files and around two on most DST files is
the optimum. The choice of one for the default is a compromise between the time
it takes to read and write the object vs. the disk space savings.

To specify no compression, set the level to zero.

We recommend using compression when the time spent in I/O is small compared
to the total processing time. If the I/O operation is increased by a factor of 5 it is
still a small percentage of the total time and it may compress the data by a factor
of 10. On the other hand if the time spend on I/O is large, compression may have
a large impact on the program's performance.

The compression factor, i.e. the savings of disk space, varies with the type of
data. A buffer with a same value array is compressed so that the value is only
written once. For example a track has the mass of a pion which it is always the
same, and the charge of the pion which is either positive or negative. For 1000
pions, the mass will be written only once, and the charge only twice (positive and
negative).

When the data is sparse, i.e. when there are many zeros, the compression factor
is also high.

The time to uncompress an object is small compared to the compression time
and is independent of the selected compression level. Note that the compression

Compression

level may be changed at any time, but the new
Bytes Write Read compression level will only apply to newly
Time Time written objects. Consequently, a ROOT file may
(sec) (sec.) contain objects with different compression

levels.

This table shows four runs of the demo script
that creates 15 histograms with different
429,871 7.03 0.06 compression parameters. To make the numbers
more significant, the macro was modified to

level
0 1,004,998 4.77 0.07
1 438,366 6.67 0.05
5
9 426,899 8.47 0.05

create 1000 histograms.

We have included two more examples to show the impact of compression on
Trees in the next chapter.

208

December 2001 - version 3.1d Input/Output

Accessing ROOT Files Remotely via a rootd

Reading and writing ROOT files over the net can be done by creating a
TNetFile object instead of a TFile object. Since the TNetFile class inherits
from the TFile class, it has exactly the same interface and behavior. The only
difference is that it reads and writes to a remote rootd daemon.

TNetFile URL

TNetFile file names are in standard URL format with protocol "root". The
following are valid TNetFile URL's:

root
root
root
root

://hpsalo/files/aap.root
://hpbrun.cern.ch/root/hsimple.root
://pcnad4%9a:5151/~nad49/data/run821.root
://pcnad9d.cern.ch:5050//vl/data/run810.root

The only difference with the well-known httpd URL's is that the root of the remote
file tree is the remote user's home directory. Therefore an absolute pathname
requires a // after the host or port (as shown in the last example above). Further
the expansion of the standard shell characters, like ~, $, .., etc.is handled
as expected. The default port on which the remote rootd listens is 1094 and this
default port is assumed by TNetFile (actually by TUr1 which is used by
TNetFile). The port number has been allocated by the IANA and is reserved for
ROOT.

Remote Authentication

Connecting to a rootd daemon requires a remote user id and password.
TNetFile supports three ways for you to provide your login information:

1. Setting it globally via the static TNetFile functions

TNetFile::SetUser () and TNetFile: :SetPasswd ()
2. Viathe ~/.netrc file (same format and file as used by ftp)
3. Via command line prompt

The different methods will be tried in the order given above. On machines with
AFS, rootd will obtain an AFS token.

Input/Output

December 2001 - version 3.1d 209

A Simple Session

root [] TFile *fl = TFile::Open("local/file.root", "update")
root [] TFile *£f2 =
TFile: :Open ("root://pcna49a.cern.ch/data/file.root", "new")
Name (pcna49a:rdm):

Password:

root [] TFile *£f3 =

TFile: :Open("http://root.cern.ch/~rdm/hsimple.root")
root [] £3.1ls()

TWebFile** http://root.cern.ch/~rdm/hsimple.root
TWebFile* http://root.cern.ch/~rdm/hsimple.root
KEY: TH1F hpx;1 This is the px distribution

KEY: TH2F hpxpy;l py vs px

KEY: TProfile hprof;1l Profile of pz versus px
KEY: TNtuple ntuple;1 Demo ntuple

root [] hpx.Draw()

The rootd Daemon

The rootd daemon works with the TNetFile class. It allows remote access to
ROOT database files in read or read/write mode. The rootd daemon can be
found in the directory SROOTSYS/bin. It can be started either via inetd or by
hand from the command line (no need to be super user). Its performance is
comparable with NFS but while NFS requires all kind of system permissions to
setup, rootd can be started by any user. The simplest way to start rootd is by
starting it from the command line while being logged in to the remote machine.
Once started rootd goes immediately in the background (no need for the &) and
you can log out from the remote node. The only argument required is the port
number (1094) on which your private rootd will listen. Using TNetFile you can
now read and write files on the remote machine.

For example:

hpsalo [] telnet f£sgiO2.fnal.gov
login: minuser

Password:

<fsgi02> rootd -p 1094

<fsgil2> exit

hpsalo [] root

root [] TFile *f =

TFile: :Open("root://£fsgi02.fnal.gov:1094/file.root", "new")
Name (fsgiO2.fnal.gov:rdm): minuser
Password:

root [] £.1s()

In the above example, rootd runs on the remote node under user id minuser
and listens to port 1094. When creating a TNetFile object you have to specify
the same port number 1094and use minuser (and corresponding password) as
login id. When rootd is started in this way, you can only login with the user id
under which rootd was started on the remote machine. However, you can make
many connections since the original rootd will fork (spawn) a new rootd that
will service the requests from the TNetFile. The original rootd keeps listening
on the specified port for other connections. Each time a TNetFile makes a
connection; it gets a new private rootd that will handle its requests. At the end
of a ROOT, session when all TNetFiles are closed only the original rootd will
stay alive ready to service future TNetFiles.

210 December 2001 - version 3.1d Input/Output

Starting rootd via inetd

If you expect to often connect via TNetFile to a remote machine, it is more
efficient to install rootd as a service of the inetd super daemon. In this way, it
is not necessary for each user to run a private rootd. However, this requires a
one-time modification of two system files (and super user privileges to do so).
Add to /etc/services the line:

rootd

1094/tcp

To /etc/inetd.conf the line

rootd
-1

stream tcp nowait root /usr/local/root/bin/rootd rootd

After these changes force inetd to reread, its config file with "ki11 -HUP
<pid inetd>".

When setup in this way it is not necessary to specify a port number in the URL
given to TNetFile. TNetFile assumes the default port to be 1094 as specified
above in the /etc/services file.

Command Line Arguments for rootd

rootd support the following arguments:

-i says we are started by inetd
-p port# specifies port number to listen on
-d level level of debug info written to syslogd
0 = no debug (default)
1 = minimum
2 = medium
3 = maximum

Reading ROOT Files via Apache Web Server

By adding one ROOT specific module to your Apache web server, you can
distribute ROOT files to any ROOT user. There is no longer a need to send your
files via FTP and risking (out of date) histograms or other objects. Your latest up-
to-date results are always accessible to all your colleagues.

To access ROOT files via a web server, create a TWebFile object instead of a
TFile object with a standard URL as file name. For example:

root
root

KEY:
KEY :
KEY :
KEY:
root

TWebFile** http://root.cern.ch/~rdm/hsimple.root
TWebFile* http://root.cern.ch/~rdm/hsimple.root

[] TWebFile f("http://root.cern.ch/~rdm/hsimple.root")
[1 £.1s()

TH1F hpx;1 This is the px distribution
TH2F hpxpy;1l py vs px

TProfile hprof;1 Profile of pz versus px
TNtuple ntuple;1 Demo ntuple

[] hpx.Draw()

Since TWebFile inherits from TFile all TFile operations work as expected.
However, due to the nature of a web server a TWebFile is a read-only file. A
TWebFile is ideally suited to read relatively small objects (like histograms or
other data analysis results). Although possible, you don't want to analyze large
TTree's viaa TWebFile.

Input/Output

December 2001 - version 3.1d 211

Here follows a step-by-step recipe for making your Apache 1.1 or 1.2 web server
ROOT aware:

1. Go to your Apache source directory and add the file
ftp://root.cern.ch/root/mod_root.c or ftp://root.cern.ch/root/mod _root133.c
when your Apache server is > 1.2 (rename the file mod root.c).

2. Add to the end of the Configuration file the line:

Module root module mod root.o

Run the Configure script

Type make

Copy the new httpd to its expected place

Go to the conf directory and add at the end of the srm. conf file the line:

AddHandler root-action root

7. Restart the httpd server

S kW

Using the General TFile::Open() Function

To make life simple we provide a general function to open any type of file (except

shared memory files of class TMapFile). This functionality is provided by the
static TFile: :Open () function:

TFile

*TFile::Open (const Text t *name, Option t *option="",
const Text t *title="",

Depending on the name argument, the function returns a TFile, a TNetFile or

a TWebFile object. In case a TNetFile URL specifies a local file, a TFile
object will be returned (and of course no login information is needed). The
arguments of the Open () function are the same as the ones for the TFile
constructor.

212

December 2001 - version 3.1d Input/Output

12 Trees

Why should you Use a Tree?

In the Input/Output chapter, we saw how objects can be saved in ROOT files.
In case you want to store large quantities of same-class objects, ROOT has
designed the TTree and TNtuple classes specifically for that purpose. The
TTree class is optimized to reduce disk space and enhance access speed. A
TNtuple is @ TTree thatis limited to only hold floating-point numbers; a
TTree on the other hand can hold all kind of data, such as objects or arrays
in addition to all the simple types.

When using a TTree, we fill its branch buffers with leaf data and the
buffers are written to file when it is full. Branches, buffers, and leafs,
are explained a little later in this chapter, but for now, it is important
to realize that not each object is written individually, but rather
collected and written a bunch at a time.

This is where the TTree takes advantage of compression and will produce a
much smaller file than if the objects were written individually. Since the

unit to be compressed is a buffer, and the TTree contains many same-class
objects, the header of the objects can be compressed. The TTree

reduces the header of each object, but it still contains the class name.

Using compression, the class name of each same-class object has a good
chance of being compressed, since the compression algorithm recognizes
the bit pattern representing the class name. Using a TTree and compression
the header is reduced to about 4 bytes compared to the original 60 bytes.
However, if compression is turned off, you will not see these large savings.

The TTree is also used to optimize the data access. A tree uses a hierarchy
of branches, and each branch can be read independently from any other
branch. Now, assume that Px and Py are data members of the event, and we
would like to compute Px* + Py? for every event and histogram the result. If
we had saved the million events without a TTree we would have to: 1) read
each event in its entirety into memory, 2) extract the Px and py from the
event, 3) compute the sum of the squares, and 4) fill a histogram. We would
have to do that a million times! This is very time consuming, and we really do
not need to read the entire event, every time. All we need are two little data
members (Px and Py). On the other hand, if we use a tree with one branch
containing Px and another branch containing Py, we can read all values of
Px and Py by only reading the Px and Py branches. This makes the use of
the TTree very attractive.

Trees December 2001 - version 3.1d 213

A Simple TTree

This script builds a TTree from an ASCII file containing statistics about the

staff at CERN. This script, staff.C and its input file staff.dat arein
SROOTSYS/tutorials.

{
//
//

example of macro to read data from an ascii file and
create a root file with an histogram and a TTree.
gROOT->Reset () ;

// the structure to hold the variables for the branch

struct staff t {
Int t cat;
Int t division;
Int t flag;
Int t age;
Int t service;
Int t children;
Int t grade;
Int t step;
Int t nation;
Int t hrweek;
Int t cost;

}i

staff t staff;

// open the ASCII file
FILE *fp = fopen("staff.dat","z");
char line[81];
// create a new ROOT file
TFile *f = new TFile("staff.root","RECREATE") ;
// create a TTree
TTree *tree = new TTree ("tree",
"staff data from ascii file");
// create one branch with all the information from
// the stucture
tree->Branch ("staff", &staff.cat,"cat/I:division:
flag:age:service:children:grade:step:
nation:hrweek:cost");
// fill the tree from the values in ASCII file
while (fgets(&line,80,fp)) {
sscanf (&1line[0] ,"%d%d%d%d",
&staff.cat, &staff.division, &staff.flag, &staff.age);
sscanf (&1line[13], "%d%d%d%d", &staff.service,
&staff.children, &staff.grade, &staff.step);
sscanf (&line[24],"%d%d%d", &staff.nation,
&staff.hrweek, &staff.cost);
tree->Fill () ;
}
// check what the tree looks like
tree->Print () ;

fclose (fp) ;
f->Write () ;

214

December 2001 - version 3.1d Trees

The script declares a structured called staff t, with several integers
representing the relevant attribute of a staff member.

The script opens the ASCII file, creates a ROOT file and a TTree. Then it
creates one branch with the TTree: : Branch method.

The first parameter of the Branch method is the branch name. The second
parameter is the address from which the first leaf is to be read. In this
example it is the address of the structure staff.

Once the branch is defined, the script reads the data from the ASCII file into
the staff t structure and fills the tree.

The ASCII file is closed, and the ROOT file is written to disk saving the tree.
Remember, trees and histograms are created in the current directory, which
is the file in our example. Hence an £->Write () saves the tree.

Show An Entry with TTree::Show

An easy way to access one entry of a tree is the use the TTree: : Show
method. For example to look at the 10" entry inthe staff.root tree:

root [] TFile f("staff.root")
root [] tree->Show(10)
======> EVENT:10
cat = 361
division =9
flag = 15
age = 51
service = 29
children =0
grade =7
step =13
nation =7
hrweek = 40
cost = 7599

Print the tree structure with TTree::Print

A helpful command to see the tree structure meaning the number of entries,
the branches and the leaves, is TTree: : Print.

root [] tree->Print()

Ak Ak A hkhkhkhhhhkhkhkhAhAhkhkhkhhhhkhkhk Ak hrhk bk hhhk bk bk bk Ak hk bk hkhkhkhkhkhkhkhkhkhkhkhkhkhhkhkhkhrhkhkhkhkkhkkhhhkhhhhhkhk
*Tree itree : staff data from ascii file

*Entries :3354 : Total = 134680 bytes File Size = 46302

* Tree compression factor = 3.24

R Rk S S b S b I b b S E h E E I b b b I I I I I R R I I I I I I I I I I I i I I I I i
*Br 0 :staff :cat/I:division:flag:age:service:children:grade:step:
* nation:hrweek:cost

*Entries :3354 : Total Size = 127856 bytes File Size = 39478

*Baskets : 4 : Basket Size = 32000 bytes Compression= 3.24

Trees

December 2001 - version 3.1d 215

Scan a Variable the tree with TTree::Scan

The TTree: : Scan method shows all values of the list of leaves separated

by a colon.

*

*

PR T T

root [11]

cost *

0 * 11975 *
10228
10730
9311
9966
7599
9868
8012

R
Ok ok K ok ko

oUW N

age *

58 *
63
56
61
52
60
53
60

b S T . S

tree->Scan("cost:age:children")
R b db b i b I b b b b b b db

Row *
PR b 4

children *

O *

PP ONODNO
b S T . S

The Tree Viewer

The tree viewer, a quick and
easy way to examine a tree.

To start the tree viewer, open
a file and object browser.
Right click on a TTree and
select StartvViewer

You can also start the tree
viewer from the command
line. First load the viewer
library.

root[]
root []

TFile f("staff.root")
tree->StartViewer ()

If you want to start a tree
viewer without a tree, you
need to load the tree player
library first:

% ROOT Object Browser

File Miews

=1 B3
Options Help

|a trea

2 =) =l

[&l Folders

| Contents of *ROOCT Fi

[Cdroot

[CIROOT Files

o start

[:l Jthomelghifspanacekiroot 250

=- Dstaff.root
E- AT

TTree::tree

Fit

Loop

Print

Process

Scan

SetDebug
Sethax<EntrylLoop
SethdaxVirtualSize
SetScanField

Startviever

SetMame
SetTitle
q I Delete
= DrawClass -
1] (O DrawClone 2

root []
root[]

gSystem->Load ("1libTreePlayer.so")

new TTreeViewer ()

216

December 2001 - version 3.1d

Trees

0 TreeYiewer Mi=]

Here is what the tree viewer looks like for the example file staff.root.

File Edit Bun Options Help
Command | | Option | | Histogram |htemp
| Current folder | Current tree - tree
. C_lTreeList W —empty— E¢ 3 —emphy - ﬁstaff.ﬂag
) 'ﬂ Y —empty - E<» —empty - %staff.age

2 —empty - E< 3 —empty - ﬁ staff service
C&;\ —empty— E< » —empty - ﬁ staff children
ﬁ Scan bax E¢ > —empty - ﬁ staff grade
E¢ s —empty— E¢ > —empty - ﬁ staff step

E¢ > —empty - ﬁstaff ﬁ staff nation
E¢ —empty— % staffcat 3 staff hrweek

E¢ 3 —empty - ﬁ staff .division ﬁ staff cost

0%
| st otist] [l [o|n] ~] reser|

%

The left panel contains the list of trees and their branches, in this case there
is only one tree. You can add more trees with the File-Open command to
open the file containing the new tree, then use the context menu on the right
panel, select SetTreeName and enter the name of the tree to add.

On the right are the leaves or variables in the tree. You can double click on
any leaf to a histogram it.

To draw more than one dimension you can drag and drop any leaf to the XY,
and Z "boxes". Then push the Draw button, witch is marked with the purple
icon on the bottom left.

To add a cut/weight to the histogram, enter an expression in the "cut box". The
cut box is the one with the scissor icon.

You can create a new expression by right clicking on any of the E() boxes.
The expression can be dragged and dropped into any of the boxes (X, Y, Z,
Cut, or Scan).

To scan one or more variables, drop them into the Scan box, then double
click on the box. You can also redirect the result of the scan to a file by
checking the Scan box on top.

Option Histogram |htemp [T Hist T Scan ¥ Rec

When the "Rec" box is checked, the Draw and Scan commands are recorded
in the history file and echoed on the command line.

The "Histogram" text box contains the name of the resulting histogram. By
default it is htemp. You can type any name, if the histogram does not exist it
will create one.

The Option text box contains the list of Draw options (see Draw Options in
the Histogram Chapter). You can select the options with the Options menu.

The Command box lets you enter any command that you could also enter on
the command line.

Trees

December 2001 - version 3.1d 217

The vertical slider on the far left side can be used to select the minimum and
maximum of an event range. The actual start and end index are shown in on
the bottom in the status window.

The IList and OList are to specify an input list of entry indices and a name for
the output list respectively. Both need be of type TList and contain integers
of entry indices. These lists are described below in the paragraph "Creating
an Event List".

There is an extensive help utility accessible with the Help menu.

Here are a couple of graphs. The first is a plot of the age distribution, the
second a scatter plot of the cost vs. age. The second one was generated by
dragging the age leaf into the Y-box and the cost leaf into the X-box, and
pressing the Draw button. By default this will generate a scatter plot. Select a
different option, for example "1ego™" to create a 2D histogram.

W el I I=] E3

Eile Edit Miew Options [nspect Classe Help

1taff.age I]
Hent=3364

1 - e = 2isa
1505—
140
120
1005—

ﬂuf—

1]

L

:uf—

P P el N IR IS e

0 an 40 in Gnlhﬂ.aga

i cl =1 E3
File Edit ¥iew Options |nspect Classes Help
| staffage:staffcost |

S5

£ 60

551

s0F

sf

wf

2[lf_...I...I...I...I...I...I...I...I...I...
0 2000 4000 6000 £000 100001200014000160001300020000
staff.cost

218

December 2001 - version 3.1d Trees

Creating and Saving Trees

This pictures shows the TTree class:

— Tree Data Structure

Collection
of Trees

fBranches = TOBArray of FBranch

Tree

f3canField -

: Brancly() Branch 1 Branch 2 Branch 3

TMaxVvirtual Size” ;
:

2 ll
‘.

fMaxEventlLoop | -

TEntHes 5 £ ; :
el ,fieavqs = FOFfArray of Fleal

TSelectedRows ”—,f—’ LeafQ —b Leaf 1 —’ Leg] 2 |

- . - S

. 4 ‘ -~
B - N S [
. . . [~ TLen: number of fixed elements | ﬂvpe COdes I
'
TBasketSize i TLenType: numher of hytes of data type C : & character string
fEventOffsetLen 5 TO1fsel: relative 1o LealD- fAddress O : an @ Lit signed integer
s THhyte=|0: number of bytes userl for LO b : an 8 bit insigned integer
THaxBaskets _," Tl=Moinler: True if pointer . . _ _
i l TizRanne: True if leaf has a range e
TEntries : S : = : a 16 bit insigned =hort interer
1

g Tl=thrsipned: True if unsigned

TAddress of Leafl
i *FlLeafCouni: poinis to Leaf connter

: & 32 bit signed inleger
: & 32 bit unsigned integer

THame: Branchnam THame - Leaf name t & 3Z hit floating pont
fTitle: leaflist f 1Tille - Leaf lype {(see Type codes) : a B4 hit Aloaling poind
. i T00CA 1 a class name TXOCH

fBaskeirvent
First event of each basket

. Array of fMaxBaskets Integers

fBaskets = FTObJArray of TBaske?

e . Baskst 0 —p [Basket 1——p Basket 2|--------

o= -

fNIlytes: Bize of compressed Daskel :
TOhjLen: Size of uncompressed Daskel fEventOffset
TDatime: DatefTime when wrilten 1o slore % if=el of cvenka in THUITET
TKeyien: Humber of bytes for the key H Anay of TEventOffaciLen Integers
& ofif vawiable lenglh atruclwe]

TCycle | Cycle number -
TSeekKey: Pointer 1o Daskel on file FBuer
T3eeklilir: Moinler to directory on file
fClassHame: TDaskel” ’f—’ Basket buffer
T Y o—) Auray of fBasketSize chars
1Tille: Tree name - ¢

S| EFipBuitfer ik

. =
THewv Buf: Humber of evenis in Bazket ¢ Baaket compresacd bufier
fLast: pointer ta last used byte in Dasket | ' —p» e T— Baskets

’ Stores

To create a TTree we use its constructor. Then we design our data layout
and add the branches.

A tree can be created by giving a name and title:

TTree t ("MyTree", "Example Tree")

Trees December 2001 - version 3.1d 219

Creating a Tree from a Folder Hierarchy

An alternative way to create a tree and organize it, is to use folders. You can
build a folder structure (see the chapter on Folders and Tasks), and create a
tree with branches for each of the sub-folders:

TTree folder tree("MyFolderTree", "/MyFolder")

The second argument is the top folder, and the "/" signals the TTree
constructor that this is a folder not just the title. You fill the tree by placing the
data into the folder structure and calling TTree: : Fill.

The reverse is also true, one can recreate the folder hierarchy from the tree
with the TTree: : SetFolder method.

Autosave

Autosave gives the option to save all branch buffers every n byte. We
recommend using Autosave for large acquisitions. If the acquisition fails to
complete, you can recover the file and all the contents since the last
Autosave. To set the number of bytes between Autosave you can use the
TTree: :SetAutosave () method. You can also call TTree: :Autosave in
the acquisition loop every n entry.

Branches

The class for a branch is called TBranch. The organization of branches
allows the designer to optimize the data for the anticipated use.

If two variables are independent, and the designer knows the variables will
not be used together, she would place them on separate branches. If,
however, the variables are related, such as the coordinates of a point, it is
most efficient to create one branch with both coordinates on it. A variable on
a TBranch is called a leaf (yes - TLeaf).

Another point to keep in mind when designing trees is the branches of the
same TTree can be written to separate files.

To add a TBranch to a TTree we call the TTree: :Branch () method. Note
that we DO NOT use the TBranch constructor.

The TTree: :Branch method has several signatures. The branch type
differs by what is stored in it. A branch can hold an entire object, a list of
simple variables, contents of a folder, contents of a TList, or an array of
objects. Let's see some examples.

To follow along you will need the shared library 1 ibEvent. so. First, check if
itis in SROOTSYS/test. Ifitis, copy it to your own area. If it is not there, you
have to build it.

220 December 2001 - version 3.1d Trees

Adding a Branch to hold a List of Variables

As in the very first example (staff.root) the data we want to save is a list
of simple variables, such as integers or floats. In this case, we use the
following TTree: : Branch signature:

tree->Branch
("Ev_Branch", &event, "temp/F:ntrack/I:nseg:nvtex:flag/i ");

Alileeot The first parameter is the branch name.

The second parameter is the address from which the first
» variable is to be read. In the code above, “event” is a structure
with one float and three integers and one unsigned integer.

You should not assume that the compiler aligns the
elements of a structure without gaps. To avoid alignment
problems, you need to use structures with same length
members. If your structure does not qualify, you need to
create one branch for each element of the structure.

The leaf name is NOT used to pick the variable out of the
structure, but is only used the name for the leaf. This means that the list of
variables needs to be in a structure in the order described in the third
parameter.

This third parameter is a string describing the leaf list. Each leaf has a name
and a type separated by a "/" and it is separated from the next leaf by a ":".

<Variable>/<type>:<Variable>/<type>

The example on the next line has two leafs: a floating-point number called
temp and an integer named ntrack.

" temp/F:ntrack/I: "

The type can be omitted and if no type is given, the same type as the
previous variable is assumed. This leaf list has three integers called ntrack,
nseg, and nvtex.

"ntrack/I:nseg:nvtex"

There is one more rule: when no type is given for the very first leaf, it
becomes a f1oat (F). This leaf list has three floats called temp, mass, and

pPX.

"temp:mass:px"

The symbols used for the type are:

a character string terminated by the 0 character.
an 8 bit signed integer.

an 8 bit unsigned integer.

a 16 bit signed integer.

a 16 bit unsigned integer.

a 32 bit signed integer.

a 32 bit unsigned integer.

a 32 bit floating point.

a 64 bit floating point.

OTT = 20IwWo

Trees December 2001 - version 3.1d 221

The type is used for a byte count to decide how much space to allocate. The
variable written is simply the block of bytes starting at the starting address
given in the second parameter. It may or may not match the leaf list
depending on whether or not the programmer is being careful when choosing
the leaf address, name, and type.

By default, a variable will be copied with the number of bytes specified in the
type descriptor symbol. However, if the type consists of two characters, the
number specifies the number of bytes to be used when copying the variable
to the output buffer. The line below describes ntrack to be written as a 16-
bit integer (rather than a 32-bit integer).

"ntrack/I2"

With this Branch method, you can also add a leaf that holds an entire array of
variables. To add an array of floats use the £ [n] notation when describing
the leaf.

Float t £[10];
tree->Branch ("fBranch", &£, "€[10]/F") ;

You can also add an array of variable length:

TFile *f = new TFile ("peter.root","recreate");
Int_t nPhot;
Float_t E[500];

TTree* nEmcPhotons = new TTree ("nEmcPhotons", "EMC Photons");
nEmcPhotons->Branch ("nPhot", &nPhot, "nPhot/I") ;
nEmcPhotons->Branch ("E",E, "E[nPhot] /F") ;

For an example see Example 2 below (SROOTSYS/tutorials/tree2.C)
and staff.cC at the beginning of this chapter.

Adding a TBranch to hold an Object

To write a branch to hold an event object, we need to load the definition of
the Event class, which is in $SROOTSYS/test/1libEvent.so. Foran
object to be in a tree it's class definition needs to include the
ClassDef/ClassImp macros. We expect to remove this restriction in the
near future.

root [] .L libEvent.so

First, we need to open a file and create a tree.

root [] TFile *f = new TFile ("AFile.root", "RECREATE")
root [] TTree *tree = new TTree("T","A Root Tree")

222 December 2001 - version 3.1d Trees

We need to create a pointer to an Event object that will be used as a
reference in the TTree: : Branch method. Then we create a branch with the
TTree: :Branch method

root []
root[]

Event *event = new Event()
tree->Branch ("EventBranch", "Event", &event, 32000, 99)

To add a branch to hold an object we use the signature above. The first
parameter is the name of the branch. The second parameter is the name of
the class of the object to be stored. The third parameter is the address of a
pointer to the object to be stored.

Note that it is an address of a pointer to the object, not just a pointer to the
object.

The fourth parameter is the buffer size and is by default 32000 bytes. It is the
number of bytes of data for that branch to save to a buffer until it is saved to
the file.

The last parameter is the split-level, which is the topic of the next section.

Static class members are not part of an object and thus not written with the
object. You could store them separately by collecting these values in a
special "status" object and write it to the file outside of the tree. If it makes
sense to store them for each object, make them a regular data member.

Setting the Split-level

To split a branch means to create a sub-branch for each data member in the
object. The split-level can be set to 0 to disable splitting or it can be a set to a
number between 1 and 99 indicating the depth of splitting.

If the split-level is set to zero, the whole object is written in its entirety to one
branch. The TTree will look like the one on the right, with one branch and
one leaf holding the entire event object.

_ é [l 0). o

=d
[N P)

A tree that is split A tree that is not split

When the split level is 1, an object data member is assigned a branch. If the
split level is 2, the data member objects will be split also, and a split level of 3
its data members objects, will be split. As the split level increases so does the
splitting depth.

ROOT's default for the split level is 99, this means the object will be split to
the maximum.

Trees

December 2001 - version 3.1d 223

Memory Considerations when Splitting a Branch

Splitting a branch can quickly generate many branches. Each branch has its
own buffer in memory. In case of many branches (say more than 100), you
should adjust the buffer size accordingly. A recommended buffer size is
32000 bytes if you have less than 50 branches. Around 16000 bytes if you
have less than 100 branches and 4000 bytes if you have more than 500
branches. These numbers are recommended for computers with memory
size ranging from 32MB to 256MB. If you have more memory, you should
specify larger buffer sizes. However, in this case, do not forget that your file
might be used on another machine with a smaller memory configuration.

Performance Considerations when Splitting a Branch

A split branch is faster to read, but slightly slower to write. The reading is
quicker because variables of the same type are stored consecutively and the
type does not have to be read each time. It is slower to write because of the
large number of buffers as described above. See Performance Benchmarks
for performance impact of split and non-split mode.

Rules for Splitting

When splitting a branch, variables of different types are handled differently.
Here are the rules that apply when splitting a branch.

o |f a data member is a basic type, it becomes one branch of class
TBranchElement

e A data member can be an array of basic types. In this case, one single
branch is created for the array.

e A data member can be a pointer to an array of basic types. The length
can vary, and must be specified in the comment field of the data
member in the class definition. (see 1/O chapter).

e Pointer data member are not split, except for pointers to a
TClonesArray. The TClonesArray (pointed to) is split if the split
level is greater than two. When the split level is one, the TClonesArray
is not split.

o |f a data member is a pointer to an object, a special branch is created.
The branch will be filled by calling the class Streamer function to
serialize the object into the branch buffer.

e |f a data member is an object, the data members of this object are spilit
into branches according to the split level (i.e. split level > 2).

Base classes are split when the object is split.
Abstract base classes are never split

e Most STL containers are supported except for some extreme cases.

These examples are not supported:

// STL vector of vectors of TAxis*
vector<vector<TAxis *> > fVectAxis;
// STL map of string/vector
map<string,vector<int> > fMapString;
// STL deque of pair
deque<pair<float, float> > fDequePair;

e C-structure data members are not supported in split mode.
e An object that is not split may be slow to browse.
e An STL container that is not split will not be accessible in the browser.

224 December 2001 - version 3.1d Trees

Exempt a Data Member from Splitting

If you are creating a branch with an object and in general you want the data
members to be split, but you want to exempt a data member from the split.
You can specify this in the comment field of the data member:

class Event : public TObject {

private:
EventHeader fEvtHdr; //|| Don't split the header

Adding a Branch to hold a TClonesArray

ROOT has two classes to manage arrays of objects. The TObjArray that
can manage objects of different classes, and the TClonesArray that
specializes in managing objects of the same class (hence the name Clones
Array). TClonesArray takes advantage of the constant size of each
element when adding the elements to the array. Instead of allocating memory
for each new object as it is added, it reuses the memory. Here is an example
of the time a TClonesArray can save over a TObjArray.

We have 100,000 events, and each has 10,000 tracks, which gives
1,000,000,000 tracks. If we use a TObjArray for the tracks, we implicitly
make a call to new and a corresponding call to delete for each track. The
time it takes to make a pair of new/delete calls is about 7 us (10'6). If we
multiply the number of tracks by 7 us, (1,000,000,000 * 7 * 10'6) we calculate
that the time allocating and freeing memory is about 2 hours. This is the
chunk of time saved when a TClonesArray is used rather than a
TObjArray. If you don't want to wait 2 hours for your tracks (or equivalent
objects), be sure to use a TClonesArray for same-class objects arrays.

Branches with TClonesArrays use the same method (TTree: :Branch) as
any other object described above. If splitting is specified the objects in the
TClonesArray are split, not the TClonesArray itself.

Identical Branch Names

When a top-level object (say event), has two data members of the same
class the sub branches end up with identical names. To distinguish the sub
branch we must associate them with the master branch by including a “.”
(dot) at the end of the master branch name. This will force the name of the

sub branch to be master. sub branch instead of simply sub branch.

For example, a tree has two branches Trigger and MuonTrigger, each
containing an object of the same class (Trigger). To uniquely identify the
sub branches we add the dot:

tree->Branch ("Trigger.","Trigger", &bl1,8000,1);
tree->Branch ("MuonTrigger.", "Trigger", &b2,8000,1) ;

If Trigger has three members, T1, T2, T3, the two instructions above will
generate sub branches called:

Trigger.Tl, Trigger.T2 , Trigger.T3,

MuonTrigger.Tl, MuonTrigger.T2 , MuonTrigger.T3.

Trees

December 2001 - version 3.1d 225

Adding a Branch with a Folder

To add a branch from a folder use the syntax:

tree->Branch ("/aFolder") ;

This method creates one branch for each element in the folder. The method
returns the total number of branches created.

Adding a Branch with a TList

To add a branch from a TList of TObjects use the syntax:

tree->Branch (anObjectList, 8000, 99);

This new method creates one branch for each element in the list. The method
returns the total number of branches created.

Examples For Writing and Reading Trees

The following sections are examples of writing and reading trees increasing
in complexity from a simple tree with a few variables to a tree containing
folders and complex Event objects.

Each example has a named script in the SROOTSYS/tutorials directory.
They are called tree1.C to tree4.C. The examples are:

o treel1.C : A tree with several simple (integers and floating point)
variables.

o tree2.C: Atree built from a C structure (st ruct). This example uses
the Geant3 C wrapper as an example of a Fortran common block
ported to C with a C structure.

o tree3.C: In this example we will show how to extend a tree with a branch
from another tree with the Friends feature. These trees have branches
with variable length arrays. Each entry has a variable number of tracks,
and each track has several variables.

o treed.C: Atree with a class (Event). The class Event is defined in
$ROOTSYS/test. In this example we first encounter the impact of
splitting a branch.

Each script contains the main function, with the same name as the file (i.e.
treel), the function to write - treelw, and the functiontoread - treelr. If
the script is not run in batch mode, it displays the tree in the browser and tree
viewer.

226 December 2001 - version 3.1d Trees

To study the example scripts, you can either execute the main script, or load

the script and execute a specific function. For example:

// execute the treel () function

// that writes, reads, and shows the tree

root [] .xX treel.C

// use ACLiC to build a shared library and

//check syntax, then execute as above

root [] .x treel.C++

// Load the script and select a function to execute
root [] .L treel.C

root [] treelw()

root [] treelr()

Example 1: A Tree with Simple Variables

This example shows how to write, view, and read a tree with several simple

(integers and floating point) variables.

Writing the Tree

Below is the function that writes the tree (treelw). First, the variables are
defined (px, py, pz, random and ev). Then we add a branch for each of
the variables to the tree, by calling the TTree: : Branch method for each

variable.

void treelw()

{
//create a Tree file treel.root

//create the file, the Tree and a few branches
TFile f("treel.root","recreate");

TTree tl("tl","a simple Tree with simple variables");

Float t px, py, pz;
Double t random;
Int t evy;
tl.Branch ("px", &px, "px/F"
tl.Branch("py", &py, "py/EF"
tl.Branch("pz", &pz, "pz/F"
(
(

’
’

’

)
)
)

tl.Branch ("random", &random, "random/D") ;
)

4
tl.Branch ("ev", &ev, "ev/I");
//fill the tree
for (Int t 1=0;1<10000;1i++) {
gRandom->Rannor (px, py)
pz = px*px + py*py;
random = gRandom->Rndm () ;
ev = 1i;
tl.Fill () ;
}
//save the Tree header.
//The file will be automatically closed
//when going out of the function scope
tl.Write();

Trees

December 2001 - version 3.1d

227

Creating Branches with A single Variable

This is the signature of TTree: : Branch to create a branch with a list of
variables:

TBranch* TTree: :Branch (const char* name, void* address,
const char* leaflist, Int _t bufsize = 32000)

The first parameter is the branch name.
The second parameter is the address from which to read the value.
The third parameter is the leaf list with the name and type of each leaf.

In this example each branch has only one leaf. In the box below, the branch
is named px and has one floating point type leaf also called px.

tl.Branch ("px", &px, "px/F");

Filling the Tree

First we find some random values for the variables. We assign px and py a
gaussian with mean = 0 and sigma = 1 by calling gRandom->Rannor (px,
py), and calculate pz. Then we call the TTree: :Fi11 method. Because
we have already organized the tree into branches and told each branch
where to get the value from, the call t1.Fi11 (), fills all branches in the tree.

After this script is executed we have a ROOT file called treel.root with a
tree called t1.

Viewing the Tree

This is the treel. root file and its tree in the browser.

% ROOT Object Browser M=l E3

Eile Wiew Qptions Help
ER -]

| &1l Folders | Contents af "YROCT Files/tree! rootft "
[CTroot -

[:lmameighiispananekmsersh i i i i i
[AROOT Files
ey [py nz

= (treet root rancorm

. -3 I _rl;,

|5 Ohiects. | v

In the right panel are the branches ev, px, py, pz,and random. Note
that these are shown as leaves because they are "end" branches with only
one leaf.

228 December 2001 - version 3.1d Trees

To histogram a leaf we can simply double click on it in the browser:

o cl M= E3

FEile Edit Miew Options [nzpect Classes Help
Px | FBmp]
Mant = {0000
u Magan = 000073 18
1] RME =0.5885
00
zs0f-
200
150
100
s0f
:I .|
) 4

This is how the tree t1 looks in the Tree Viewer. Here we can add a cut and
add other operations for histogramming the leaves (see the section on Tree
Viewer). For example, we can plot a two dimensional histogram.

o TreeViewer Hi=]

FEile Edit Bun Options Help
Caommand | | Oiption |Ieg|:| | Histogram |htemp ™ Hist
| Current folder | Current tree - t1
| TreeList ¥: E¢» —empty— EC» —empty— % px
) il Yipy E¢y —empty— EC» —empty— ﬁpy

2 —empty - E» -empty—- EC —empiy - ﬁpz
a'g;ﬂ—laemp:ut!.r— E» —empty— E» —empty— ﬁrandl:um
ﬁ'ﬁcan box ECy —empiy— EC» —emply - ﬁev

| 0%
1| | st Oist | [conterr W[4| e |m] ~| ReseT|
File Edit Yiew Options Inspect Classes Help

P¥pE |

Trees December 2001 - version 3.1d 229

Reading the Tree

The treelr function shows how to read the tree and access each entry and
each leaf.

We first define the variables to hold the read values.

Float

t px, py, pPzZ;

Then we tell the tree to populate these variables when reading an entry. We
do this with the TTree: : SetBranchAddress method. The first parameter
is the branch name, and the second is the address of the variable where the
branch data is to be placed.

In this example the branch name is px. This name was given when the tree
was written (see treelw). The second parameter is the address of the
variable px.

tl->Se

tBranchAddress ("px", &px) ;

Once the branches have been given the address, a specific entry can be
read into the variables with the method TTree: :GetEntry (n) .

The TTree: :GetEntry method reads all the branches for entry (n) and
populates the given address accordingly.

Reading selected branches is quicker than reading an entire entry. If you are
interested in only one branch, you can use the TBranch: :GetEntry
method and only that branch is read.

Here is the script treelr:

void treelr ()

{

//read the Tree generated by treelw

//a

//n
//a

//these objects alive when we leave this function.

TFi
TTr

Flo
Dou
Int
tl-
tl-
tl-
tl-
tl-

//create two histograms
TH1F *hpx = new THI1F ("hpx","px distribution",100,-3,3);
TH2F *hpxpy = new TH2F ("hpxpy","py vs px",30,-3,3,30,-3,3);

// continuied ..

nd fill two histograms

ote that we use ''nmew'" to create the TFile
nd TTree objects, because we want to keep

le *f = new TFile ("treel.root");
ee *tl = (TTree*)f->Get ("tl");

at_t px, py, pz;

ble t random;

_t oev;

>SetBranchAddress ("px", &px) ;
>SetBranchAddress ("py", &py) ;
>SetBranchAddress ("pz", &pz) ;
>SetBranchAddress ("random", &random) ;
>SetBranchAddress ("ev", &ev) ;

230

December 2001 - version 3.1d Trees

//read all entries and fill the histograms
Int t nentries = (Int t)tl->GetEntries();
for (Int t i=0;i<nentries;i++) {

t1->GetEntry (1) ;

hpx->Fill (px) ;

hpxpy->Fill (px,py);
}

//we do not close the file.

//We want to keep the generated histograms
//we open a browser and the TreeViewer

if (gROOT->IsBatch()) return;

new TBrowser();

tl->StartViewer () ;

//In the browser, click on "ROOT Files",
//then on "treel.root".

//You can click on the histogram icons
//in the right panel to draw them.

//in the TreeViewer, follow the instructions
//in the Help button.

Example 2: A Tree with a C Structure

The executable script for this example is SROOTSYS/tutorials/tree2.C.
In this example we show:

how to build branches from a C structure

how to make a branch with a fixed length array
how to make a branch with a variable length array
how to read selective branches

how to fill a histogram from a branch

how to use TTree: : Draw to show a 3D plot.

A C structure (struct) is used to build a ROOT tree. In general we
discourage the use of C structures, we recommend using a class instead.
However, we do support them for legacy applications written in C or Fortran.

The example struct holds simple variables and arrays. It maps to a
Geant3 common block /gctrak/. This is the definition of the common
block/structure:

const Int t MAXMEC = 30;
// PARAMETER (MAXMEC=30)
// COMMON/GCTRAK/VECT (7) ,GETOT,GEKIN, VOUT (7)

// + ,NMEC,LMEC (MAXMEC)

// + ,NAMEC (MAXMEC) , NSTEP

// + ,PID,DESTEP,DESTEL,6 SAFETY,SLENG

// + ,STEP,SNEXT,SFIELD, TOFG,GEKRAT , UPWGHT

typedef struct {
Float t wvect[7];
// continued ..

Trees

December 2001 - version 3.1d 231

Float t getot;
Float t gekin;
Float t wvout[7];

Int t nmec;

Int t lmec [MAXMEC] ;
Int t namec [MAXMEC] ;
Int t nstep;

Int t pid;

Float t destep;
Float t destel;
Float t safety;
Float t sleng;
Float t step;

Float t snext;
Float t sfield;
Float t tofg;

Float t gekrat;
Float t upwght;

} Getrak t;

When using Geant3, the common block is filled by Geant3 routines at each
step and only the Tree: : Fi11 method needs to be called. In this example
we emulate the Geant3 step routine with the helixStep function. We also
emulate the filling of the particle values. The calls to the Branch methods are
the same as if Geant3 were used.

void helixStep (Float_t step, Float_t *vect, Float_t *vout)
{

// extrapolate track in constant field

Float t field = 20; // field in kilogauss
enum Evect {kX,kY,kZ,kPX,kPY,kPZ,kPP};

vout [kPP] = vect[kPP];

Float t h4 = field*2.99792e-4;

Float t rho = -h4/vect [kPP];

Float t tet = rho*step;

Float t tsint = tet*tet/6;

Float t sintt = 1 - tsint;

Float t sint = tet*sintt;

Float t coslt = tet/2;

Float t fl = step*sintt;

Float t f2 = step*coslt;

Float t f3 = step*tsint*vect[kPZ];
Float t f4 = -tet*coslt;

Float t f5 = sint;

Float t f6 = tet*coslt*vect[kPZ];

vout [kX] = vect[kX] + (fl*vect[kPX] - f2*vect[kPY]):;
vout [kY] = vect[kY] + (fl*vect[kPY] + f2*vect[kPX]);
vout [kZ] = vect[kZ] + (fl*vect[kPZ] + £3);
vout [kPX] = vect [kPX] + (fd4*vect[kPX] - fb*vect[kPY]);
vout [kPY] = vect [kPY] + (fd4*vect[kPY] + f5*vect[kPX]);
vout [kPZ] = vect[kPZ] + (f4*vect[kPZ] + £f6);

232 December 2001 - version 3.1d Trees

Writing The Tree

void tree2w() // write tree2 example

{

//create a Tree file tree2.root
TFile f("tree2.root","recreate");

//create the file, the Tree

TTree t2("t2","a Tree with data from a fake Geant3");

// declare a variable of the C structure type
Gctrak t gstep;

// add the branches for a subset of gstep
t2.Branch ("vect",gstep.vect,"vect [7]/F");
t2.Branch ("getot", &gstep.getot, "getot/F") ;
t2.Branch ("gekin", &gstep.gekin, "gekin/F") ;
t2.Branch ("nmec", &gstep.nmec, "nmec/I") ;
t2.Branch ("1lmec",gstep.lmec, "lmec[nmec] /I");
t2.Branch ("destep", &gstep.destep, "destep/F") ;
t2.Branch ("pid", &gstep.pid, "pid/I");

//Initialize particle parameters at first point
Float t px,py,pz,p,charge=0;
Float t vout([7];

Float t mass = 0.137;
Bool t newParticle = kTRUE;
gstep.step = 0.1;

gstep.destep =
gstep.nmec =
gstep.pid =

’

’

O O O O H+H O

’

//transport particles
for (Int_t i=0; i<10000; i++) {
//generate a new particle if necessary
// (Geant3 emulation)
if (newParticle) {
px = gRandom->Gaus (0, .02);
py = gRandom->Gaus (0, .02);
pz = gRandom->Gaus (0, .02);
p = TMath::Sqgrt (px*px+py*py+pz*pz) ;
charge = 1; if (gRandom->Rndm() < 0.5) charge = -1;
gstep.pid += 1;

gstep.vect[0] = 0;

gstep.vect[1l] = 0;

gstep.vect[2] = 0;

gstep.vect[3] = px/p;

gstep.vect[4] = py/p;

gstep.vect[5] = pz/p;

gstep.vect[6] = p*charge;

gstep.getot = TMath::Sqgrt (p*p + mass*mass) ;
gstep.gekin = gstep.getot - mass;

newParticle = kFALSE;
}

// continued ..

Trees

December 2001 - version 3.1d

233

// fill the Tree with current step parameters
t2.Fill();

//transport particle in magnetic field
// (Geant3 emulation)
helixStep (gstep.step, gstep.vect, vout); //make one step

//apply energy loss

gstep.destep = gstep.step*gRandom->Gaus (0.0002,0.00001) ;
gstep.gekin -= gstep.destep;
gstep.getot = gstep.gekin + mass;

gstep.vect[6]= charge*TMath::Sqgrt
(gstep.getot*gstep.getot - mass*mass);

gstep.vect[0] = vout[0];

gstep.vect[1l] = vout[l];

gstep.vect[2] = vout[2];

gstep.vect[3] = vout[3];

gstep.vect[4] = vout[4];

gstep.vect[5] = vout[5];

gstep.nmec = (Int_t) (5*gRandom->Rndm ()) ;

for (Int t 1=0;1<gstep.nmec;l++) gstep.lmec[l] = 1;

if (gstep.gekin < 0.001) newParticle = kTRUE;
if (TMath::Abs(gstep.vect[2]) > 30)
newParticle = kTRUE;
}

//save the Tree header. The file will be automatically
// closed when going out of the function scope
t2.Write () ;

Adding a Branch with a Fixed Length Array

At first, we create a tree and create branches for a subset of variables in the

C structure Gctrak t. Then we add several types of branches.

The first branch reads seven floating point values beginning at the address of
'gstep.vect'. You do not need to specify sgstep.vect, because in C

and C++ the array variable holds the address of the first element.

t2.Branch ("vect",gstep.vect,"vect [7]/F");
t2.Branch ("getot", &gstep.getot, "getot/F") ;
t2.Branch ("gekin", &gstep.gekin, "gekin/F") ;

Adding a Branch with a Variable Length Array

The next two branches are dependent on each other. The first holds the
length of the variable length array and the second holds the variable length
array.

The 1mec branch reads nmec number of integers beginning at the address
gstep.destep.

t2.Branch ("nmec", &gstep.nmec, "nmec/I") ;
t2.Branch ("1lmec",gstep.lmec, "lmec[nmec] /I");

December 2001 - version 3.1d Trees

The variable nmec is a random number and is reset for each entry.

gstep.nmec = (Int t) (5*gRandom->Rndm()) ;

Filling the Tree

In this emulation of Geant3, we generate and transport particles in a
magnetic field and store the particle parameters at each tracking step in a
ROOT tree.

Analysis

In this analysis we do not read the entire entry, we only read one branch.
First we set the address for the branch to the file dstep, the we use the
TBranch: :GetEntry method

Then we fill a histogram with the dstep branch entries, draw it and fit it with
a gaussian.

In addition we draw the particle's path using the three values in the vector.
Here we use the TTree: : Draw method. It automatically creates a histogram
and plots the 3 expressions (see Using Trees in Analysis).

void tree2r ()
{
// read the Tree generated by tree2w and fill one histogram
// we are only interested by the destep branch.

// note that we use "new" to create the TFile and TTree objects
// because we want to keep these objects alive when we leave
// this function.

TFile *f = new TFile("tree2.root");

TTree *t2 = (TTree*)f->Get ("t2");

static Float t destep;

TBranch *b destep = t2->GetBranch ("destep");
b destep->SetAddress (&destep);

//create one histogram
TH1F *hdestep =
new TH1F ("hdestep","destep in Mev",100,1le-5,3e-5);
//read only the destep branch for all entries
Int t nentries = (Int t)t2->GetEntries();
for (Int_t i=0;i<nentries;i++) {
b destep->GetEntry(i);
// fill the histogram with the destep entry
hdestep->Fill (destep) ;

// we do not close the file.

// We want to keep the generated histograms

// We fill a 3-d scatter plot with the particle
// step coordinates

TCanvas *cl = new TCanvas("cl","cl",600,800);
cl->SetFillColor (42);

cl->Divide(1,2);

cl->cd (1) ;

// continued ..

Trees December 2001 - version 3.1d 235

hdestep->SetFillColor (45);
hdestep->Fit ("gaus");

cl->cd(2);

gPad->SetFillColor (37);
t2->SetMarkerColor (kRed) ;

t2->Draw ("vect[0] :vect[1l] :vect[2]");
if (gROOT->IsBatch()) return;

// invoke the x3d viewer
gPad->x3d () ;

20 X3D Viewer [_[O]x] i cl _ |0 x|

File Help File Edit Wiew Options Inspect Classes Help
[Seskpinie:] hdes tep
Ment = 10000

800 £ Mean = 2.002e-05

RMS = 1.004e-D6|

o0 -

&00 —
500 —
aon |-
300 —

200 -

100

= L L L fi I I ' L L L w0
%.'1 042 044 046 048 02 022 024 026 028 03

| wect[0]:vect1]: veet[2] |

236 December 2001 - version 3.1d Trees

Example 3: Adding Friends to Trees

In this example we will show how to extend a tree with a branch from another
tree with the Friends feature.

Adding a Branch to an Existing Tree

You may want to add a branch to an existing tree. For example, if one
variable in the tree was computed with a certain algorithm, you may want to
try another algorithm and compare the results.

One solution is to add a new branch, fill it, and save the tree. The code below
adds a simple branch to an existing tree.

Note the kOverwrite option in the Write method, it overwrites the existing
tree. If it is not specified, two copies of the tree headers are saved.

void tree3AddBranch() {
TFile f("tree3.root","update");

Float t new v;
TTree *t3 = (TTree*)f->Get ("t3");
TBranch *newBranch = t3-> Branch("new v",&new v, "new v/F");

//read the number of entries in the t3

Int t nentries = (Int t)t3->GetEntries();

for (Int t i = 0; i < nentries; i++){
new_v= gRandom->Gaus (0, 1) ;
newBranch->Fill () ;

}

// save only the new version of the tree

t3->Write ("", TObject::kOverwrite) ;

Adding a branch is often not possible because the tree is in a read-only file
and you do not have permission to save the modified tree with the new
branch. Even if you do have the permission, you risk loosing the original tree
with an unsuccessful attempt to save the modification. Since trees are
usually large, adding a branch could extend it over the 2GB limit. In this
case, the attempt to write the tree fails, and the original data is may also be
corrupted.

In addition, adding a branch to a tree enlarges the tree and increases the
amount of memory needed to read an entry, and therefore decreases the
performance.

For these reasons, ROOT offers the concept of friends for trees (and chains).
We encourage you to use TTree: : AddFriend rather than adding a branch
manually.

TTree::AddFriend

A tree keeps a list of friends. In the context of a tree (or a chain), friendship
means unrestricted access to the friends data. In this way it is much like
adding another branch to the tree without taking the risk of damaging it. To
add a friend to the list, you can use the TTree: : AddFriend method.

Trees December 2001 - version 3.1d 237

The TTree (tree) below has two friends (£t1 and £t2) and now has
access to the variables a, b, c, 1, j, k, 1 and m.

tree
ft1

k | M
q r

The AddFriend method has two parameters, the first is the tree name and
the second is the name of the ROOT file where the friend tree is saved.
AddFriend automatically opens the friend file. If no file name is given, the
tree called £t1 is assumed to be in the same file as the original tree.

tree.AddFriend ("ftl1l","friendfilel.root");

If the friend tree has the same name as the original tree, you can give it an
alias in the context of the friendship:

tree.AddFriend ("treel = tree","friendfilel.root");

Once the tree has friends, we can use TTree: : Draw as if the friend's
variables were in the original tree. To specify which tree to use in the Draw
method, use the syntax:

<treeName>.<branchname>.<varname>

If the variablename is enough to uniquely identify the variable, you can
leave out the tree and/or branch name.

For example, these commands generate a 3-d scatter plot of variable "var"
inthe TTree tree versus variable vl in TTree ftl versus variable v2 in
TTree ft2.

tree.AddFriend ("ftl","friendfilel.root");
tree.AddFriend ("ft2","friendfile2.root");
tree.Draw("var:ftl.v1:ft2.v2");

entry 1
entry 2
entry 3

entry n

ft1.v1 tree:var

ft2 v2 The picture illustrates the access of the
' tree and its friends with a Draw command.

When AddFriend is called, the ROOT file

is automatically opened and the friend tree

(ft1) header is read the into memory.
The new friend (£t 1) is added to the list of
friends of tree.

The number of entries in the friend must
be equal or greater to the number of
entries of the original tree. If the friend tree
has fewer entries a warning is given and

the missing entries are not included in the
histogram.

238

December 2001 - version 3.1d Trees

To retrieve the list of friends from a tree use TTree: :GetListOfFriends.

When the tree is written to file (TTree: :Write), the friends list is saved with

it. And when the tree is retrieved, the trees on the friends list are also
retrieved and the friendship restored.

When a tree is deleted, the elements of the friend list are also deleted.

It is possible to declare a friend tree that has the same internal structure
(same branches and leaves) as the original tree, and compare the same
values by specifying the tree.

tree.Draw ("var:ftl.var:ft2.var")

The example code is in SROOTSYS/tutorials/tree3.C. Hereis the
script:

void tree3w() {
// Example of a Tree where branches are variable length

//

arrays

// A second Tree is created and filled in parallel.
// Run this script with

//

//

//

//

.X tree3.C
In the function treer, the first Tree is open.
The second Tree is declared friend of the first tree.
TTree: :Draw is called with variables from both Trees.

Author: Rene Brun

const Int t kMaxTrack = 500;

Int t ntrack;

Int t stat[kMaxTrack]

Int t sign[kMaxTrack];

Float t px[kMaxTrack];

Float t pyl[kMaxTrack]
pzl]
ptl]

’

’

’

Float t kMaxTrack
Float t kMaxTrack
Float t zv[kMaxTrack];
Float t chi2[kMaxTrack];
Double t sumstat;

’

create the first root file with a tree
TFile f("tree3.root","recreate");

TTree *t3 = new TTree("t3","Reconst ntuple");
t3->Branch ("ntrack", &éntrack, "ntrack/I") ;
t3->Branch ("stat", stat, "stat [ntrack]/I");
t3->Branch ("sign", sign, "sign[ntrack]/I");
t3->Branch ("px", px, "px[ntrack] /F") ;
t3->Branch ("py",py, "py[ntrack] /F");
t3->Branch ("pz",pz, "pz[ntrack] /F");
t3->Branch ("zv", zv, "zv[ntrack] /F") ;
t3->Branch ("chi2",chi2, "chi2 [ntrack]/EF");

create the second root file with a different tree
TFile fr ("tree3f.root","recreate");

TTree *t3f = new TTree("t3f","a friend Tree");
t3f->Branch ("ntrack", &ntrack, "ntrack/I");
t3f->Branch ("sumstat", &sumstat, "sumstat/D") ;
t3f->Branch ("pt", pt, "pt [ntrack] /F");

continued ..

Trees

December 2001 - version 3.1d

239

// Fill the trees
for (Int_t 1=0;i<1000;i++) |
Int t nt = gRandom->Rndm() * (kMaxTrack-1) ;
ntrack = nt;
sumstat = 0;
// set the values in each track
for (Int_t n=0;n<nt;n++) {

stat[n] = n%3;
51gn[n] = 1i%2;
x[n] = gRandom->Gaus (0, 1) ;
y[n] = gRandom->Gaus (0, 2) ;
z[n] = gRandom—>Gaus(lO 5);
v([n] = gRandom—>Gaus(lOO 2);
ch12[] = gRandom->Gaus (0 1);
sumstat += chi2[n];
ptin] = TMath::Sqrt(px[n]*px[n] + pyln]*pyln]):;

}
t3->Fill();
t3f->Fill () ;
}
// Write the two files
t3->Print () ;
f.cd();
t3->Write () ;
fr.cd();
t3f->Write () ;
}

// Function to read the two files and add the friend
void tree3r()
{
TFile *f = new TFile("tree3.root");
TTree *t3 = (TTree*)f->Get ("t3");
// Add the second tree to the first tree as a friend
t3->AddFriend ("t3f", "tree3f.root");
// Draw pz which is in the first tree and use pt
// in the condition. pt is in the friend tree.
t3->Draw ("pz", "pt>3");
}

// This is executed when typing .x tree3.C
void tree3()
{

treel3w () ;

tree3r () ;

240

December 2001 - version 3.1d Trees

Example 4: A Tree with an Event Class

This example is a simplified version of SROOTSYS/test/MainEvent.cxx
and where Event objects are saved in a tree. The full definition of Event is in
SROOTSYS/test/Event.h. To execute this macro, you will need the library
SROOTSYS/test/libEvent. so. If it does not exist you can build the test
directory applications by following the instruction in the
SROOTSYS/test/README file.

In this example we will show

o the difference in splitting or not splitting a branch
¢ how to read selected branches of the tree,
e how to print a selected entry

The Event Class

Event is a descendent of TObject. As such it inherits the data members of
TObject and it's methods such as Dump () and Inspect () and Write ().
Also, because it inherits from TObject it can be a member of a collection.

To summarize, the advantages of inheriting from a ToObject are:

e Inheritthe Write, Inspect, and Dump methods
e Enables a class to be a member of a ROOT collection
e Enables RTTI

Below is the list of the Event data members. It contains a character array,
several integers, a floating point number, and an EventHeader object. The
EventHeader class is described in the following paragraph. Event also has
two pointers, one to a TClonesArray of tracks and one to a histogram.

The string "->" in the comment field of the members *fTracks and *fH
instructs the automatic Streamer to assume that the objects *fTracks and
* £H are never null pointers and that fTracks->Streamer can be used
instead of the more time consuming form R b << fTracks.

class Event : public TObject {

private:
char fType[20];
Int t fNtrack;
Int t fNseg;
Int t fNvertex;
UInt t fFlag;
Float t fTemperature;
EventHeader fEvtHdr;
TClonesArray *fTracks; //->
TH1F *fH; //->
Int t fMeasures[10];
Float t fMatrix([4][4];
Float t *fClosestDistance; // [fNvertex]
static TClonesArray *fgTracks;
static THIF *fgHist;

// .. list of methods
ClassDef (Event,1l) //Event structure

}i

Trees December 2001 - version 3.1d 241

The EventHeader Class

The EventHeader class (also defined in Event . h) does not inherit from
TObject. Beginning with ROOT 3.0, an object can be placed on a branch
even though it does not inherit from TObject. In previous releases branches
were restricted to objects inheriting from the TObject. However, it has
always been possible to write a class not inheriting from TObject to a tree
by encapsulating it in a TObject descending class as is the case in
EventHeader and Event.

class EventHeader {

private:
Int t fEvtNum;
Int t fRun;
Int t fDate;

// .. list of methods

ClassDef (EventHeader,1l) //Event Header

}s

The Track Class

The Track class descends from TObject since tracks are in a
TClonesArray (i.e. a ROOT collection class) and contains a selection of
basic types and an array of vertices. It's TObject inheritance, enables
Track to be in a collection, and in Event is a TClonesArray of Tracks.

class Track public TObject {

private:
Float t £Px; //X component of the momentum
Float t fPy; //Y component of the momentum
Float t fPz; //%Z component of the momentum
Float t fRandom; //A random track quantity
Float t fMass2; //The mass square of this particle
Float t £Bx; //X intercept at the vertex
Float t fBy; //Y intercept at the vertex
Float t fMeanCharge; //Mean charge deposition of all

hits
Float t fXfirst; //X coordinate of the first point
Float t fXlast; //X coordinate of the last point
Float t fYfirst; //Y coordinate of the first point
Float t fYlast; //Y coordinate of the last point
Float t fzfirst; //%Z coordinate of the first point
Float t fZlast; //Z coordinate of the last point
Float t fCharge; //Charge of this track
Float t fvertex[3]; //Track vertex position
Int t fNpoint; //Number of points for this track
Short t fvalid; //Validity criterion

// method definitions ..
ClassDef (Track,1) //A track segment

}i

242

December 2001 - version 3.1d

Trees

Writing the Tree

We create a simple tree with two branches both holding Event objects. One
is split and the other is not. We also create a pointer to an Event object
(event).

void treedw()
{
// check to see if the event class is in the dictionary
// if it is not load the definition in libEvent.so
if (!TClassTable::GetDict ("Event")) {
gSystem->Load ("$SROOTSYS/test/libEvent.so") ;
}

//create a Tree file treed.root
TFile f("treed.root","RECREATE") ;

// Create a ROOT Tree
TTree t4("t4","A Tree with Events");

// Create a pointer to an Event object
Event *event = new Event();

// Create two branches, split one.
td4.Branch ("event branch", "Event", &event,16000,2);
t4.Branch("event not split", "Event", &event,16000,0);

// a local variable for the event type
char etype[20];
// Fill the tree
for (Int t ev = 0; ev <100; ev++) {
Float t sigmat, sigmas;
gRandom->Rannor (sigmat, sigmas) ;
Int t ntrack = Int t (600 + 600 *sigmat/120.);
Float t random = gRandom->Rndm (1) ;
sprintf (etype, "typesd", evs)) ;
event->SetType (etype) ;
event->SetHeader (ev, 200, 960312, random);
event->SetNseg (Int t(l0*ntrack+20*sigmas));
event->SetNvertex (Int_t (1+20*gRandom->Rndm())) ;
event->SetFlag (UInt t (random+0.5));
event->SetTemperature (random+20.) ;

for(UChar t m = 0; m < 10; m++) {
event->SetMeasure (m, Int t(gRandom->Gaus (m,m+1)));

}

// £fill the matrix
for(UChar t i0 = 0; 10 < 4; 10++) |
for(UChar t il = 0; il < 4; 1il++) |
event->SetMatrix (10,11, gRandom->Gaus (10*1i1,1)) ;
}
}

//.. continued

Trees

December 2001 - version 3.1d 243

// Create and fill the Track objects
for (Int t t = 0; t < ntrack; t++) event->AddTrack (random) ;

// Fill the tree
td . Fill () ;
// Clear the event before reloading it
event->Clear () ;
}
// Write the file header
f.Write();
// Print the tree contents
t4.Print () ;

Reading the Tree

First, we check if the shared library with the class definitions is loaded. If not
we load it.

Then we read two branches, one for the number of tracks and one for the
entire event. We check the number of tracks first, and if it meets our condition
we read the entire event.

We show the fist entry that meets the condition.

void treedr ()
{
// check to see if the event class is in the dictionary
// if it is not load the definition in libEvent.so
if (!TClassTable::GetDict ("Event")) {
gSystem->Load ("SROOTSYS/test/libEvent.so") ;

}
// read the tree generated with treedw

// note that we use "new" to create the TFile and
// TTree objects, because we want to keep these
// objects alive when we leave this function.
TFile *f = new TFile("treed.root");

TTree *t4 = (TTree*)f->Get ("t4");

// create a pointer to an event object. This will be used
// to read the branch values.
Event *event = new Event();

// get two branches and set the branch address
TBranch *bntrack = t4->GetBranch ("fNtrack");
TBranch *branch = t4->GetBranch("event split");
branch->SetAddress (&event) ;

Int t nevent = t4->GetEntries();
Int t nselected = 0;
Int £t nb = 0;

//continued ..

244 December 2001 - version 3.1d Trees

for (Int t i=0;i<nevent;i++) {
//read branch "fNtrack'only
bntrack->GetEntry (i) ;

//reject events with more than 587 tracks
if (event->GetNtrack () > 587)continue;

//read complete accepted event in memory
nb += t4->GetEntry(i);
nselected++;

//print the first accepted event
if (nselected == 1) t4->Show();

//clear tracks array
event->Clear () ;

}

if (gROOT->IsBatch()) return;
new TBrowser();
t4->StartViewer () ;

Now, let's see what the tree looks like in the tree viewer.

i TreeYiewer Mi=]

File Edit Bun Options Help
Command | | Ciption | | Histogram |htemp r
| Current folder | Current tree - t4
. |:_|TreeList Xz —empty - fﬁ'event_hran-:h 3 fracks.
| = e T —empty- £ TObiect 3 fTracks.
E—"fi& EMEMISANIE Z: —empty - 3 Type(] 3 Tracks.
P f{”TDmect = —empty - 3 Ttrack 3 fTracks.
E :L-ﬁﬂypeﬂ T scan box 3 Thzeg 3 Tracks.
Lo) % fhitrack E¢ 3 —empty - ﬁ fivertex ﬁ fTracks.
Ct- 3 TNse
E L i % vae?tex E¢ 3 —empty - ﬁ fFlag ﬁ fTracks.
. ﬁ - E» —empty— ﬁ fTemperature ﬁ fTracks.
P S T‘r:rjlfperature E 3 —emipty - fﬁ'vatHdr 3 fTracks.
| - 2 MEvtHor EC Y —empty - 3 (EvtHdr fEvthum % fTracks.
i _ fﬁ'ﬂ'ra;:ks E¢ 3 —empty - ﬁ fEwtHdr fRun ﬁ fTracks.
! L-ﬁfH E¢» —empty - ﬁ fEvtHdr fDate ﬁﬂra;:ks.
DL B Phemsures] <3 —empty - 4 fracks 3 Tracks.
Dok s Matrix0[E< ¥ —empty— 3 TTracks 1P 3 fracks.
| Lo g fCiosestDistance EC 3 —empty - 3 fTracks TPy 3 fTracks.
- - ¥ event_not_split ‘| | LI
| 0%

B| | st OList | (Frs W efefo|n] ~| ResET|

You can see the two branches in the tree in the left panel: the

event branch is split and hence expands when clicked on. The other
branch event not split is not expandable and we can not browse the
data members.

Trees December 2001 - version 3.1d 245

The TClonesArray of tracks fTracks is also split because we set the split

level to 2.

The output on the command line is the result of tree4->show. It shows the

first entry with more than 587 tracks:

======> EVENT:26

event split =

fUniqueID =0

fBits = 50331648

fType[20] = 116 121 112 101 49 0 0 00O O OO OO0OO0O0O0O0O0OO
fNtrack = 585

fNseg = 5834

fNvertex = 17

fFlag =0

fTemperature = 20.044315

fEvtHdr.fEvtNum = 26

fEvtHdr. fRun = 200

fEvtHdr. fDate = 960312

fTracks = 585

fTracks.fUniqueib = 0, 0, 0, 0, 0, 0, O, 0, 0, O

Trees in Analysis

The methods TTree: :Draw, TTree::MakeClass, and
TTree: :MakeSelector are available for data analysis using trees.

The TTree: : Draw method is a powerful yet simple way to look and draw the
trees contents. It enables you to plot a variable (a leaf) with just one line of
code. However, the Draw method falls short once you want to look at each
entry and design more sophisticated acceptance criteria for your analysis.
For these cases, you can use TTree: :MakeClass. It creates a class that
loops over the trees entries one by one. You can then expand it to do the
logic of your analysis.

The TTree: :MakeSelector is the recommended method for ROOT data
analysis. It is especially important for large data set in a parallel processing
configuration where the analysis is distributed over several processors and
you can specify which entries to send to each processors. With MakeClass
the user has control over the event loop, with MakeSelector the treeisin
control of the event loop.

Simple Analysis using TTree::Draw

We will use the tree in staff.root which was made by the macro in
SROOTSYS/tutorials/staff.C

First, open the file and lists its contents.

root [] TFile £ ("staff.root")
root [] £.1s()
TFile** staff.root
TFile* staff.root
KEY: TTree tree;1 staff data from ascii file

We can see the TTree "tree" in the file. We will use it to experiment with the
TTree: : Draw method, so let’s create a pointer to it:

246

December 2001 - version 3.1d Trees

root

[] TTree *MyTree = tree

CINT allows us to simply get the object by using it. Here we define a pointer
to a TTree object and assign it the value of "tree", the TTree in the file.
CINT looks for "tree" and returns it.

To show the different Draw options, we create a canvas with four sub-pads.
We will use one sub-pad for each Draw command.

root
root

[] TCanvas *myCanvas = new TCanvas ()
[] myCanvas->Divide(2,2)

We activate the first pad with the TCanvas::cd statement:

root

[] myCanvas->cd (1)

We then draw the variable cost:

root

[] MyTree->Draw("cost")

As you can see this call to TTree: : Draw has only one parameter. Itis a
string containing the leaf name.

A histogram is automatically created as a result of a TTree: : Draw. The
style of the histogram is inherited from the TTree attributes and the current
style (gStyle)is ignored. The TTree gets its attributes from the current
TStyle at the time the it was created. You can call the method

TTree: :UseCurrentStyle to change to the current style rather than the
TTree style (see gStyle, see the Chapter Graphics and Graphic User
Interfaces).

In this next segment we activate the second pad and draw a scatter plot
variables:

root
root

[] myCanvas->cd(2)
[] MyTree->Draw("cost:age")

This signature still only has one parameter, but it now has two dimensions
separated by a colon (“x: y”). The item to be plotted can be an expression
not just a simple variable. In general, this parameter is a string that contains
up to three expressions, one for each dimension, separated by a colon
(“el:e2:e3”). Alist of examples follows this introduction.

Using Selection with TTree:Draw

Change the active pad to 3, and add a selection to the list of parameters of
the draw command.

root[] myCanvas->cd(3)
root[] MyTree->Draw("cost:age","nation == 3");

This will draw the cost vs. age for the entries where the nation is equal to
3. You can use any C++ operator, plus some functions defined in TFormula,
in the selection parameter.

Trees

December 2001 - version 3.1d 247

The value of the selection is used as a weight when filling the histogram. If
the expression includes only Boolean operations as in the example above,
the resultis 0 or 1. If the result is 0, the histogram is not filled. In general, the
expression is:

Selection = "weight * (boolean expression)"

If the Boolean expression evaluates to true, the histogram is filled with a
weight. If the weight is not explicitly specified it is assumed to be 1.

For example, this selection will add 1 to the histogram if x is less than y and
the square root of z is less than 3.2.

"x<y && sqrt(z)>3.2"

On the other hand, this selection will add x+v to the histogram if the square
root of z is larger than 3.2..

" (x+y) * (sqrt(z)>3.2)"

The Draw method has its own parser, and it only looks in the current tree for
variables. This means that any variable used in the selection must be defined
in the tree. You cannot use an arbitrary global variable in the TTree: :Draw

method.

Using TCut Objects in TTree::Draw

The TTree: : Draw method also accepts TCut objects. A TCut is a
specialized string object used for TTree selections. A TCut object has a
name and a title. It does not have any data members in addition to what it
inherits from TNamed. It only adds a set of operators to do logical string
concatenation. For example, assume:

TCut cutl = "x<1"
TCut cutz2 = "y>2"
then

cutl && cut?2
//result is the string " (x<1)&&(y>2)"

Operators =, +=, +, * | &&, || are overloaded, here are some examples:

)) L)

root[]TCut ¢l = "x < 1"

root[]TCut c2 = "y < 0"

root[]TCut c¢3 = cl && c2

root []MyTree.Draw("x", cl)

root []MyTree.Draw("x", cl || "x>0")

root []MyTree.Draw("x", cl && c2)

root []MyTree.Draw("x", "(x + y)" * (cl && c2)

248 December 2001 - version 3.1d Trees

Accessing the Histogram in Batch Mode

The TTree: : Draw method creates a histogram called htemp and puts it on
the active pad.

In a batch program, the histogram htemp created by default, is reachable
from the current pad.

// draw the histogram

nt->Draw ("x", "cuts");

// get the histogram from the current pad

TH1F htemp = (TH1F*) gPad->GetPrimitive ("htemp");
// now we have full use of the histogram
htemp->GetEntries () ;

If you pipe the result of the TTree: : Draw into a histogram, the histogram is
also available in the current directory. You can do:

// or

// Draw the histogram and fill hnew with it
nt->Draw ("x>>hnew", "cuts") ;

// get hnew from the current directory

TH1F *hnew = (TH1F*)gDirectory->Get ("hnew");

TH1F *hnew = (TH1F*)gPad->GetPrimitive ("hnew");

get hnew from the current Pad

Using Draw Options in TTree::Draw

The next parameter is the draw option for the histogram:

root [] myCanvas->cd(4)
root [] MyTree->Draw("cost:age",'"nation == 3", "surf2”);

-

X
Eile Edit Miew Options |nspect Classes Help

The draw options are the same as for TH1: : Draw, and they are listed in the
section: Draw Options in the chapter on Histograms.

In addition to the draw options defined in TH1, there are three more.

The 'prof' and 'profs' thatdraw a profile histogram (TProfile) rather
than a regular 2D histogram (TH2D) from an expression with two variables. If
the expression has three variables, a

=[0Il Tprofile2D is generated.

m B s BBEELEHEBR

The 'profs' generates a TProfile
with error on the spread. The 'prof"
option generates a TProfile with
error on the mean.

The "gof £" option suppresses
generating the graphics.

L

You can combine the draw options in a
list separated by commas.

After typing the lines above, you
should now have a canvas that looks
like this.

December 2001 - version 3.1d 249

Superimposing two Histograms

When superimposing two 2-D histograms inside a script with TTree: : Draw
and using the "same" option, you will need to update the pad between Draw

commands.

// superimpose two 2D scatter plots

{

// Create a 2D histogram and fill it with random numbers
TH2 *h2 =
new TH2D ("h2" ,"2D histo",100,0,70,100,0,20000);

for (Int t 1 = 0; 1 < 10000; i++)
h2->Fill (gRandom->Gaus (40, 10) , gRandom->Gaus (10000, 3000)) ;

// set the color to differentiate it visually
h2->SetMarkerColor (kGreen) ;
h2->Draw () ;

// Open the example file and get the tree
TFile f("staff.root");
TTree *myTree = (TTree*)f.Get ("tree"):;

// the update is needed for the next draw command to
// work properly

gbPad->Update() ;

myTree->Draw ("cost:age", "","same");

In this example, h2->Draw is only adding the object h2 to the pad's list of

primitives. It does not paint the object on the screen. However,
TTree: : Draw when called with option "same" gets the current

pad coordinates to build an intermediate histogram with the right limits.
Since nothing has been painted in the pad yet, the pad limits have not
been computed. Calling pad->Update forces the painting of the pad and
allows TTree: : Draw to compute the right limits for the intermediate
histogram.

Setting the Range in TTree::Draw

There are two more optional parameters to the TTree: : Draw method: one
is the number of entries and the second one is the entry to start with. For
example this command draws 1000 entries starting with entry 100:

myTree->Draw ("cost:age", "","",1000,100);

TTree::Draw Examples

The examples below use the Event.root file generated by the
SROOTSYS/test/Event executable and the Event, Track, and
EventHeader class definitions are in SROOTSYS/test/Event.h.

The commands have been tested on the split levels 0, 1, and 9. Each
command is numbered and referenced by the explanations immediately
following the examples.

250

December 2001 - version 3.1d Trees

// Data members and methods

1. tree->Draw ("fNtrack"):;
2. tree->Draw ("event.GetNtrack()");
3. tree->Draw ("GetNtrack()"):;
4. tree->Draw ("fH.fXaxis.fXmax");
5. tree->Draw ("fH.fXaxis.GetXmax()");
6. tree->Draw ("fH.GetXaxis () .fXmax"):;
7. tree->Draw ("GetHistogram() .GetXaxis () .GetXmax()");
// expressions in the selection paramter
8. tree->Draw ("fTracks.fPx","fEvtHdr.fEvtNum%10 == 0");
9. tree->Draw ("fPx", "fEvtHdr.fEvtNum%10 == 0");
// Two dimensional arrays
// fMatrix is defined as:
// Float_t fMatrix[4][4]; in Event class
10. tree->Draw ("fMatrix");
11. tree->Draw ("fMatrix[1[1");
12. tree->Draw ("fMatrix[2][2]");
13. tree->Draw ("fMatrix[1[0]");
14. tree->Draw ("fMatrix[1][1");
// using two arrays
// Float t fVertex[3]; in Track class
15. tree->Draw ("fMatrix - fVertex");
16. tree->Draw ("fMatrix[2][1] - fVertex[5][1]");
17. tree->Draw ("fMatrix[][1] - fVertex[5][1]");
18. tree->Draw ("fMatrix[2]][] - fVertex[5][1");
19. tree->Draw ("fMatrix[][2] - fVertex[J[1]1");
20 tree->Draw ("fMatrix[][2] - fVertex[1[1");
21 tree->Draw ("fMatrix[][] - fVertex[1[1");
// variable length arrays
22. tree->Draw ("fClosestDistance");
23. tree->Draw ("fClosestDistance[fNvertex/21");
// mathematical expressions
24 tree->Draw ("sqrt (fPx*fPx + fPy*fPy + £fPz*fPz))");
// strings
25. tree->Draw ("fEvtHdr.fEvtNum", "fType==\"typel\" ");
26. tree->Draw ("fEvtHdr.fEvtNum","strstr (fType, \"1\" ");
// Where fPoints is defined in the track class:
// Int_t fNpoint;
// Int_t *fPoints; [fNpoint]
27. tree->Draw ("fTracks.fPoints") ;
28. tree->Draw ("fTracks.fPoints
- fTracks.fPoints|[] [fAvgPoints]");
29. tree->Draw ("fTracks.fPoints[2] []
- fTracks.fPoints[] [55]");
30. tree->Draw ("fTracks.fPoints[] []
- fTracks.fVertex[][]");
//.. continued

Trees

December 2001 - version 3.1d

251

// Selections
31. tree->Draw ("fValide&Ox1",
32.
33.

34.
35.
36.

tree->Draw ("fPx", " (£Bx>.4) || (fBy<=-.4)");
tree->Draw ("fPx",

tree->Draw ("fVertex", "fVertex>10")
tree->Draw ("fPx[600]")
tree->Draw ("fPx[600]", "fNtrack>600")

" (fNvertex>10) && (fNseg<=6000)")

"fBx*fBx* (fBx>.4) + fBy*fBy* (fBy<=-.4)");

Explanations:

1.

tree->Draw ("fNtrack");

Fills the histogram with the number of tracks for each entry. fNtrack is
a member of event.

tree->Draw ("event.GetNtrack()"):

Same as case 1, but use the method of event to get the number of
tracks. When using a method, you can include parameters for the method
as long as the parameters are literals.

tree->Draw ("GetNtrack()"):

Same as case 2, the object of the method is not specified. The command
uses the first instance of the GetNtrack method found in the objects
stored in the tree. We recommend using this shortcut only if the method
name is unique.

tree->Draw ("fH.fXaxis.fXmax");
Draw the data member of a data member. In the tree, each entry has a

histogram. This command draws the maximum value of the X-axis for
each histogram.

5.tree->Draw ("fH.fXaxis.GetXmax()")

Same as case 4, but use the method of a data member.

6.tree->Draw ("fH.GetXaxis () .fXmax") ;

Same as case 4, a data member of a data member retrieved by a
method.

tree->Draw ("GetHistogram() .GetXaxis () .GetXmax()")

Same as case 4, using only methods.

8.tree->Draw ("fTracks.fPx","fEvtHdr.fEvtNum%$1l0 == 0") ;

10

11.

Use data members in the expression and in the selection parameter to
plot £Px or all tracks in every 10th entry. Since fTracks is a
TClonesArray Of Tracks, there will be d values of £pPx for each entry.

tree->Draw ("fPx","fEvtHdr.fEvtNum%$1l0 == 0");

Same as case 8, use the name of the data member directly.

.tree->Draw ("fMatrix");

When the index of the array is left out or when empty brackets are used
[1,all values of the array are selected.

Draw all values of fMatrix for each entry in the tree. If fMatrixis
defined as: Float t fMatrix[4][4], all 16 values are used for each
entry.

tree->Draw ("fMatrix[1[1");

252

December 2001 - version 3.1d Trees

12.

13.

14.

15.

le6.

17.

18.

19.

The same as case 10, all values of tMatrix are drawn for each entry.
tree->Draw ("fMatrix[2][2]");

The single element at tMatrix[2] [2] is drawn for each entry.
tree->Draw ("fMatrix[]1[0]");

Four elements of fMatrix are used: fMatrix[1][0],
fMatrix[2][0], fMatrix([3]1[0], fMatrix[4][0].

tree->Draw ("fMatrix[1][1");

Four elements of fMatrix are used: fMatrix[1][0],
fMatrix[1][2], fMatrix([1][3], fMatrix[1l][4].

tree->Draw ("fMatrix - fVertex"):;

With two arrays and unspecified element numbers, the number of
selected values is the minimum of the first dimension times the minimum
of the second dimension. In this case fVvertex is also a two
dimensional array since it is a data member of the tracks array. If
fVertex is defined in the track class as: Float t *fVertex[3], it
has fNtracks x 3 elements. fMatrix has 4 x 4 element. This case,
draws 4 (the lesser of fNtrack and 4) times 3 (the lesser of 4 and 3) ,
meaning 12 elements per entry. The selected values for each entry are:

fMatrix[0] [0] - fVertex[0][0]
fMatrix[0] [1] fVertex[0] [1]
fMatrix[0][2] fVertex[0] [2]
fMatrix[1][0] fVertex[1][0]
fMatrix[1][1] fVertex[1] [1]
fMatrix[1][2] fVertex[1] [2]
fMatrix[2][0] fVertex[2] [0]
fMatrix[2][1] fVertex[2][1]
fMatrix[2][2] fVertex[2][2]
fMatrix[3][0] fVertex[3] [0]
fMatrix[3][1] fVertex[3] [1]
fMatrix[3][2] fVertex[3] [2]

tree->Draw ("fMatrix[2][1]

- fVertex[5][1]1");

This command selects one value per entry.
tree->Draw ("fMatrix[][1l] - fVertex[5][1]1"):

The first dimension of the array is taken by the fMatrix.

fMatrix[0] [1] - fVertex[5][1]
fMatrix[1][1] - fVertex[5][1]
fMatrix[2] [1] - fVertex[5][1]
fMatrix[3][1] - fVertex[5][1]
tree->Draw (" ("fMatrix[2][] - fVertex[5][1"):

The first dimension minimum is 2, and the second dimension minimum is
3 (from fvertex). Three values are selected from each entry:

fMatrix[2][0] - fVertex[5][0]
fMatrix[2][1] - fVertex[5][1]
fMatrix[2][2] - fVertex[5][2]

tree->Draw ("fMatrix[]1[2] - fVertex[][1]1")

This is similar to case 18. Four values are selected from each entry:

fMatrix[0][2] - fVertex[0][1]
fMatrix[1][2] - fVertex[1][1]

Trees

December 2001 - version 3.1d 253

fMatrix[2][2]
fMatrix[3][2]

- fVertex[2]
- fVertex[3]

20. tree->Draw ("fMatrix[]1[2]

21.

22.

23.

24.

25.

26.

27.

28.

entry:
fMatrix[0] [2] - fVertex[0] [0]
fMatrix[0] [2] - fVertex[0][1]
fMatrix[0] [2] - fVertex[0][2]
fMatrix[1][2] - fVertex[1l][0]
fMatrix[1][2] - fVertex[1l][1]
fMatrix[1][2] - fVertex[1l][2]
fMatrix[2][2] - fVertex[2][0]
fMatrix[2][2] - fVertex[2][1]
fMatrix[2][2] - fVertex[2][2]
fMatrix[3][2] - fVertex[3][0]
fMatrix[3][2] - fVertex[3][1]
fMatrix[3][2] - fVertex[3][2]

tree->Draw ("fMatrix[][]

[1]
[1]

- fVertex[1[1")

This is similar to case 19. Twelve values are selected (4x3)from each

- fVertex[1[1")

This is the same as case 15. The first dimension minimum is 4 (from
fMatrix), and the second dimension minimum is 3 (from fvertex).
Twelve values are selected from each entry.

tree->Draw ("fClosestDistance")

This event data member fClosestDistance is a variable length array:
Float t *fClosestDistance; // [fNvertex].

This command selects all elements, but the number per entry depends
on the number of vertices of that entry.

tree->Draw ("fClosestDistance[fNvertex/2]")

With this command the element at fNvertex/2 of the
fClosestDistance array is selected. Only one per entry is selected.

tree->Draw ("sqrt(fPx*fPx + fPy*fPy + fPz*fPz)")

This command shows the use of a mathematical expression. It draws the
square root of the sum of the product.

tree->Draw ("fEvtHdr.fEvtNum", "fType==\"typel\" ")

You can compare strings, using the symbols == and !=, in the first two
parameters of the Draw command (TTreeFormula). In this case, the
event number for 'type1’ events is plotted.

tree->Draw ("fEvtHdr. fEvtNum", "strstr (£Type, \"1\") ")

To compare strings, you can also use strstr. In this case, events
having a'1'in £Type are selected.

tree->Draw ("fTracks.fPoints")

If fPoints is a data member of the Track class declared as:

Int t fNpoint;

Int:t *fPoints; [fNpoint]
The size of the array fPoints varies with each track of each event. This
command draws all the value in the fPoints arrays.

tree->Draw ("fTracks.fPoints
- fTracks.fPoints[] [fAvgPoints]") ;

When fAvgPoints is a data member of the Event class, this example
selects:

254

December 2001 - version 3.1d Trees

29.

30.

fTracks[0].fPoints[0] fTracks[0]
fTracks[0].fPoints[1] fTracks[0]
fTracks[0] .fPoints[2] fTracks[0]
fTracks[0] .fPoints[3] fTracks [0]
fTracks[0].fPoints[4] fTracks[0]
fTracks[0].fPoints[max0] -
fTracks[0] .fPoint [fAvgPoints]
fTracks[1l].fPoints[0] fTracks[1]
fTracks[1l].fPoints[1] fTracks[1]
fTracks[1l].fPoints[2] fTracks[1]
fTracks[1l].fPoints[3] fTracks[1]
fTracks[1l].fPoints[4] - fTracks[1l]

fTracks[1l].fPoints[maxl] -
fTracks[1l].fPoint[fAvgPoints]

fTracks[fNtrack-1].fPoints[0]

- fTracks[fNtrack-1]

fTracks[fNtrack-1].fPoints[1]

- fTracks[fNtrack-1]

fTracks[fNtrack-1].fPoints[2]

- fTracks[fNtrack-1]

fTracks[fNtrack-1].fPoints[3]

- fTracks[fNtrack-1]

fTracks[fNtrack-1].fPoints[4]

- fTracks[fNtrack-1]

fTracks[fNtrack-1].fPoints[maxn]

.fPoint [fAvgPoints]
.fPoint [fAvgPoints]
.fPoint [fAvgPoints]
.fPoint [fAvgPoints]
.fPoint [fAvgPoints]

.fPoint [fAvgPoints]
.fPoint [fAvgPoints]
.fPoint [fAvgPoints]
.fPoint [fAvgPoints]
.fPoint [fAvgPoints]

.fPoint [fAvgPoints]
.fPoint [fAvgPoints]
.fPoint [fAvgPoints]
.fPoint [fAvgPoints]

.fPoint [fAvgPoints]

- fTracks[fNtrack-1].fPoint[fAvgPoints]

Where max0, maxl,
array for the respective track.

tree->Draw ("fTracks.fPoints[2][]

. max n, is the size of the fPoints

fTracks.fPoints[] [55]")

For each event, this expression is selected:
fTracks[2] .fPoints[0] - fTracks
fTracks fPoints[1] - fTracks

fTracks

fPoints[3] - fTracks

(0]. [55

[27. [[11. [55
fTracks[2] .fPoints[2] - fTracks[2].fPoints[55
[2]. [[3]. [55

fPoints
fPoints

fPoints

fTracks[2] .fPoints[max] - fTracks[max].fPoints[55]

where max is the minimum of £fNtrack and £Tracks[2] . fNpoint.

tree->Draw (" ("£fTracks.fPoints[][]

fTracks.fVertex[][]1")

For each event and each track, this expression is selected. It is the
difference between fPoints and of fvertex. The number of elements
used for each track is the minimum of £Npoint and 3 (the size of the

fVertex array).

fTracks[0].fPoints]|

- fTracks[0].fVertex[0]

0]
fTracks[0] .fPoints[1] - fTracks[0].fVertex[1l]
2]

fTracks[0].fPoints]|
// with fTracks[1l].fNpoint==

- fTracks[0].fVertex[2]

fTracks[1l].fPoints[0] - fTracks[l].fVertex[0]
fTracks[1l].fPoints[1l] - fTracks[l].fVertex[1l]

Trees

December 2001 - version 3.1d 255

31.

32.
33.

34.

35.
36.

fTracks[1l].fPoints[2] - fTracks[l].fVertex[2]
// with fTracks[1l].fNpoint==5

fTracks[2] .fPoints[0] - fTracks[l].fVertex[0]
fTracks[2] .fPoints[1] - fTracks[l].fVertex[1l]
// with fTracks[2].fNpoint==

fTracks[3].fPoints[0] - fTracks[3].fVertex[0]
// with fTracks[3].fNpoint==

fTracks[4] .fPoints[0] - fTracks[4].fVertex[0]
fTracks[4] .fPoints[1] - fTracks[4].fVertex[1l]
fTracks[4].fPoints[2] - fTracks[4].fVertex[2]

// with fTracks[4].fNpoint==

tree->Draw ("£fValide&Ox1l",
" (ENvertex>10) && (fNseg<=6000)")

You can use bit patterns (&, |, <<) or Boolean operation.

tree->Draw ("fPx"," (fBx>.4) || (fBy<=-.4)");
tree->Draw ("£fPx",
"fBx*fBx* (fBx>.4) + fBy*fBy* (fBy<=-.4)");

The selection argument is used as a weight. The expression returns a
multiplier and in case of a Boolean the multiplier is either O (for false) or
1 (for true). The first command draws fPx for the range between 0.4 and
—0.4, the second command draws fPx for the same range, but adds a
weight using the result of the second expression.

tree->Draw ("fVertex", "fVertex>10")

When using arrays in the selection and the expression, the selection is
applied to each element of the array.

if (fVertex[0]1>10) fVertex[0]
if (fVertex[1]1>10) fVertex[1l]
if (fVertex[2]>10) fVertex[2]

tree->Draw ("£Px[600]")
tree->Draw ("£Px[600]","£fNtrack > 600")

When using a specific element for a variable length array the entries with
less elements are ignored. Thus these two commands are equivalent.

256

December 2001 - version 3.1d Trees

Creating an Event List

The TTree: :Draw method can also be used to build a list of the entries.
When the first argument is preceded by ">>" ROOT knows that this
command is not intended to draw anything, but to save the entries in a list
with the name given by the first argument. The resulting listis a
TEventList, and is added to the objects in the current directory.

For example, to create a TEventList of all entries with more than 600
tracks:

root [] TFile *f = new TFile ("Event.root")

root [] T->Draw(">> myList", " fNtrack > 600")
This list contains the entry number of all entries with more than 600 tracks.
To see the entry numbers use the Print ("all"™) command.

root [] myList->Print("all")
When using the ">>" whatever was in the TEventList is overwritten. The
TEventList can be grown by using the ">>+" syntax.
For example to add the entries, with exactly 600 tracks:

root [] T->Draw(">>+ myList", " fNtrack == 600")
If the Draw command generates duplicate entries, they are not added to the
list.

root [] T->Draw(">>+ myList", " £fNtrack > 610")
This command does not add any new entries to the list because all entries
with more than 610 tracks have already been found by the previous
command for entries with more than 600 tracks.
Using an Event List
The TEventList can be used to limit the TTree to the events in the list.
The SsetEventList method tells the tree to use the event list and hence
limits all subsequent TTree methods to the entries in the list. In this example,
we create a list with all entries with more than 600 tracks and then set it so
the Tree will use this list. To reset the TTree to use all events use
SetEventList (0) .
1) Let's look at an example. First, open the file and draw the fNtrack.

root [] TFile *f = new TFile ("Event.root")

root [] T->Draw("fNtrack ")

2) Now, put the entries with over 600 tracks into a TEventList called
myList. We get the list from the current directory and assign it to a variable
list.

Trees

December 2001 - version 3.1d 257

root [] T->Draw(">>myList", " fNtrack >600")
root [] TEventList *list = (TEventList*)gDirectory->Get("myList")
3) Instruct the tree T to use the new list and draw it again. Note that this is
exactly the same Draw command. The list limits the entries.
root [] T->SetEventList(list)
root [] T->Draw("fNtrack ")
You should now see a canvas that looks like this one.
el M=l B3
FEile Edit Miews Options Inspect Classes Help
fNtrack I Temp
Hant=33
r Maan = 803.7
d :_ FME = 2.453
=
s
oF
33
2f
iE
[I: PR (SR IR SR T S—— _—
(] &0 &04 4114 &08 &10
Filling a Histogram
The TTree: : Draw method can also be used to fill a specific histogram. The
syntax is:
root [] TFile *f = new TFile ("Event.root")
root [] T->Draw("fNtrack >> myHisto")

root

TH1.Print Name= myHisto,

[] myHisto->Print()

Entries= 100, Total sum= 100

As we can see, this created a TH1, called myHisto. If you want to append
more entries to the histogram, you can use this syntax:

root

[] T->Draw("£fNtrack >>+ myHisto")

If you do not create a histogram ahead of time, ROOT will create one at the
time of the Draw command (as is the case above). If you would like to draw
the variable into a specific histogram where you, for example, set the range
and bin number, you can define the histogram ahead of time and use it in the
Draw command. The histogram has to be in the same directory as the tree.

root[]
root []

TH1 *hl = new TH1("hl1","h1",50, O.,
T -> Draw("£fNtrack>> hl");

150.);

When you project a TTree into a histogram, the histogram inherits the
TTree attributes and not the current style attributes. This allows you to
project two Trees with different attributes into the same picture. You can call

258

December 2001 - version 3.1d Trees

the method TTree: : UseCurrentStyle to change the histogram to use the
current style (gStyle, see the Chapter Graphics and Graphic User
Interfaces).

Projecting a Histogram

If you would like to fill a histogram, but not draw it you can use the
TTree: :Project () method

root [] T->Project("quietHisto","fNtrack")
Making a Profile Histogram
In case of a two dimensional expression, you can generate a TProfile
histogram instead of a two dimensional histogram by specifying the 'prof"'
or 'profs"' option. The prof option is automatically selected when the
output is redirected into a TProfile. For example y: x>>pf where pf is an
existing TProfile histogram.

Tree Information

Once we have drawn a tree, we can get information about the tree. These
are the methods used to get information from a drawn tree:

e GetSelectedRows: Returns the number of entries accepted by the
selection expression. In case where no selection was specified, it
returns the number of entries processed.

e GetV1: Returns a pointer to the float array of the first variable.

e GetV2: Returns a pointer to the float array of second variable

e GetV3: Returns a pointer to the float array of third variable.

e GetW: Returns a pointer to the float array of Weights where the weight
equals the result of the selection expression.

To read the drawn values of £Ntrack into an array, and loop through the
entries follow the lines below. First, open the file and draw the fNtrack
variable:

root [] TFile *f = new TFile ("Event.root")

root [] T->Draw("fNtrack")
Then declare a pointer to a float and use the Getv1 method to retrieve the
first dimension of the tree. In this example we only drew one dimension
(ENtrack) if we had drawn two, we could use GetV2 to get the second one.

root [] Float_t *a

root [] a = T->GetV1()
Loop through the first 10 entries and print the values of tNtrack:

root [] for (int i = 0; i < 10; i++) cout<<alil<< " "

root [] cout << endl // need an endl to see the values

594 597 606 595 604 610 604 602 603 596

By default, TTree: : Draw creates these arrays with fEstimate words
where fEstimate can be setvia TTree: : SetEstimate. If you have more
entries than fEstimate only the first fEstimate selected entries will be
stored in the arrays. The arrays are used as buffers. When fEstimate

Trees

December 2001 - version 3.1d 259

entries have been processed, ROOT scans the buffers to compute the
minimum and maximum of each coordinate and creates the corresponding
histograms.

You can use these lines to read all entries into these arrays:

root
root

[] Int_t nestimate = (Int_t)T->GetEntries();
[] T->SetEstimate (nestimate) ;

Obviously, this will not work if the number of entries is very large.

This technique is useful in several cases, for example if you want to draw a
graph connecting all the x, y (or z) points. Note that you may have a tree
(or chain) with 1 billion entries, but only a few may survive the cuts and will fit
without problems in these arrays.

Using TTree::MakeClass

The TTree: : Draw method is convenient and easy to use, however it falls
short if you need to do some programming with the variable.

For example, for plotting the masses of all oppositely changed pairs of tracks,
you would need to write a program that loops over all events, finds all pairs of
tracks, and calculates the required quantities. We have shown how to retrieve
the data arrays from the branches of the tree in the previous section, and you
could just write that program from scratch. Since this is a very common task,
ROOQOT provides a utility that generates a skeleton class designed to loop over
the entries of the tree. This is the TTree::MakeClass method

We will now go through the steps of using MakeClass with a simplified
example. The methods used here obviously work for much more complex
event loop calculations.

These are our assumptions:

We would like to do selective plotting and loop through each entry of the tree
and tracks. We chose a simple example: we want to plot £pPx of the first 100
tracks of each entry.

We have a ROOT tree with a branch for each data member in the "Event"
object. To build this file and tree follow the instructions on how to build the
examples in SROOTSYS/test.

Execute Event and instruct it to split the object with this command (from the
Unix command line).

> SROOTSYS/test/Event 400 1 2 1

This creates an Event. root file with 400 events, compressed, split, and
filled. See SROOTSYS/test/MainEvent.Cxx for more info.

The person who designed the tree makes a shared library available to you,
which defines the classes needed. In this case, the classes are Event,
EventHeader, and Track and they are defined in the shared library
libEvent.so. The designer also gives you the Event . h file to see the
definition of the classes. You can locate Event.h in SROOTSYS/test, and if
you have not yet built 1ibEvent. so, please see the instructions of how to
build it. If you have already built it, you can now use it again.

260

December 2001 - version 3.1d Trees

Creating a Class with MakeClass

First, we load the shared library and open Event.root.

root [] .L libEvent.so
root [] TFile *f = new TFile ("Event.root"):;
root [] £->1s();
TFile** Event.root TTree benchmark ROOT file
TFile* Event.root TTree benchmark ROOT file
KEY: TH1F htime;1 Real-Time to write versus time
KEY: TTree T;1 An example of a ROOT tree
We can see there is a tree “T”, and just to verify that we are working with the
correct one, we print the tree, which will show us the header and branches.
root [] T->Print():;
From the output of print we can see that the tree has one branch for each
data member of Event, Track, and EventHeader.
Now we can use TTree: :MakeClass on our tree “T”. MakeClass takes
one parameter, a string containing the name of the class to be made.
In the command below, the name of our class will be “MyClass”.
root [] T->MakeClass("MyClass")
Files: MyClass.h and MyClass.C generated from Tree: T

CINT informs us that it has created two files. MyClass . h, which contains the
class definition and MyClass.C, which contains the MyClass: : Loop
method. MyClass has more methods than just Loop. The other methods
are: a constructor, a destructor, GetEntry, LoadTree, Notify, and
Show. The implementations of these methods are in the .h file. This division
of methods was done intentionally. The .C file is kept as short as possible,
and contains only code that is intended for you to customize. The .h file
contains all the other methods.

To start with, it helps to understand both files, so lets start with MyClass.h
and the class definition:

Trees

December 2001 - version 3.1d 261

MyClass.h

class MyClass {

public

//pointer to the analyzed TTree or TChain
TTree *fChain;

//current Tree number in a TChain

Int t fCurrent;

//Declaration of leaves types
//Declaration of leaves types

UInt t fUniquelD;

UInt t fBits;

Char t fType[20];

Int t fNtrack;

Int t fNseg;

Int t fNvertex;

UInt t fFlag;

Float t fTemperature;
Int t fEvtHdr fEvtNum;

//List of branches

TBranch *b_ fUniquelD;
TBranch *b fBits;

TBranch *b fType;

TBranch *b fNtrack;

TBranch *b fNseg;

TBranch *b fNvertex;
TBranch *b fFlag;

TBranch *b fTemperature;
TBranch *b fEvtHdr fEvtNum;

MyClass (TTree *tree=0);
~MyClass () ;

Int t Cut(Int t entry):;

Int t GetEntry(Int t entry);
Int t LoadTree(Int t entry);
void Init (TTree *tree);

void Loop () ;

Bool t Notify();

void Show (Int _t entry = -1);

We can see data members in the generated class. The first data member is
fChain. Once this class is instantiated, fChain will point to the original tree
or chain this class was made from. In our case, this is “T” in “Event.root”. If
the class is instantiated with a tree as a parameter to the constructor,

fChain will point to the tree named in the parameter.

Next is fCurrent, which is also a pointer to the current tree/chain. Its role is
only relevant when we have multiple trees chained together in a TChain.

The class definition shows us that this tree has one branch and one leaf per
data member.

The methods of MyClass are:

e MyClass (TTree *tree=0) : This constructor has an optional tree for
a parameter. If you pass a tree, MyClass will use it rather than the tree
from which it was created.

262 December 2001 - version 3.1d Trees

e void 1Init(TTree *tree) : Initis called by the constructor to
initialize the tree for reading. It associates each branch with the
corresponding leaf data member.

e ~MyClass () : This is the destructor, nothing special.

e Int t GetEntry(Int t entry): Thisloads the class with the entry
specified. Once you have executed GetEntry, the leaf data members
in MyClass are set to the values of the entry. For example,

GetEntry (12) loads the 13™ event into the event data member of
MyClass (note that the first entry is 0).

GetEntry returns the number of bytes read from the file. In case the
same entry is read twice, ROOT does not have to do any I/O. In this
case GetEntry returns 1. It does not return 0, because many people
assume a return of 0 means an error has occurred while reading.

e Int t LoadTree(Int t entry) and void Notify():

These two methods are related to chains. LoadTree will load the tree
containing the specified entry from a chain of trees. Notify is called by
LoadTree to adjust the branch addresses.

e void Loop () : Thisis the skeleton method that loops through each
entry of the tree. This is interesting to us, because we will need to
customize it for our analysis.

MyClass.C

MyClass: : Loop consists of a for-loop calling GetEntry for each entry. In
the template, the numbers of bytes are added up, but it does nothing else. If
we were to execute it now, there would be no output.

{
if

for

void MyClass: :Loop ()

Int t nentries = Int t(fChain->GetEntries());

Int t nbytes = 0, nb = 0;

(fChain == 0) return;

(Int_t jentry=0; jentry<nentries;jentry++) {

Int t ientry = LoadTree (jentry);

// in case of a TChain, ientry is the entry number
// in the current file

nb = fChain->GetEntry (jentry); nbytes += nb;

// if (Cut(ientry) < 0) continue,

At the beginning of the file are instructions about reading selected branches.
They are not reprinted here, but please read them from your own file
Modifying MyClass::Loop

Lets continue with the goal of going through the first 100 tracks of each entry
and plot Px. To do this we change the Loop method.

if

Int t nentries = Int t(fChain->GetEntries());
TH1F *myHisto = new THIF ("myHisto","fPx", 100, -5,5);
TH1F *smallHisto = new TH1F("small","fPx", 100, -5,5);

(fChain == 0) return;

In the for-loop, we need to add another for-loop to go over all the tracks.
In the outer for-loop, we get the entry and the number of tracks.
In the inner for-loop, we fill the large histogram (myHisto) with all tracks and

Trees

December 2001 - version 3.1d 263

the small histogram (smallHisto) with the track if it is in the first 100.

for
GetEntry (jentry) ;
for

(Int_t jentry=0; jentry<nentries;jentry++) {

}

(Int t j = 0; j < 100; j++){

myHisto->Fill (fTracks fPx[j]);

if (3 < 100){
smallHisto->Fill (fTracks fPx[]j]);

}

Outside of the for-loop, we draw both histograms on the same canvas.

myHisto->Draw () ;
smallHisto->Draw ("Same") ;

Save these changes to MyClass.C and start a fresh root session. We will
now load MyClass and experiment with its methods.
Loading MyClass

The first step is to load the library and the class file. Then we can instantiate
a MyClass object.

root
root
root

[] .L libEvent.so
[] .L MyClass.C
[] MyClass m

W cl

File Edit ¥iew Options Inspect Classes

Now we can get a specific entry and populate the event leaf. In the code
snipped below, we get entry 0, and print the number of tracks (594). Then we
get entry 1 and print the number of tracks (597).

I [=1 E3

Help root [] m.GetEntry (0)

Px |

(int) 57503

TgATT
Nent= 238522

s000 -
B000 |-
To00 -
5000
so00 -
aom0
soo0 -

2000 £

1000 £
o

root [] m.£fNtrack()
(Int_t)594

root [] m.GetEntry (1)
(int) 48045

root [] m.£fNtrack()
(Int_t)597

Mean =0.002328
RMS = 0.9357

Now we can call the Loop method, which will
build and display the two histograms.

root [] m.Loop()

You should now see a canvas that looks like this.

To conclude the discussion on MakeClass let’s lists the steps that got us
here.

e Call TTree: :MakeClass, which automatically creates a class to loop
over the tree.

¢ Modify the MyClass: :Loop () method in MyClass. C to fit your task.

e Load and instantiate MyClass, and run MyClass: :Loop () .

264

December 2001 - version 3.1d Trees

Using TTree::MakeSelector

With a TTree we can make a selector and use it to process a limited set of
entries. This is especially important in a parallel processing configuration
where the analysis is distributed over several processors and we can specify
which entries to send to each processors. The TTree: : Process method is
used to specify the selector and the entries.

Before we can use TTree: : Process we need to make a selector. We can
call the TTree: :MakeSelector method. It creates two files similar to
TTree: :MakeClass. In the resulting files is a class that is a descendent of
TSelector and implements the following methods:

e TsSelector::Begin: This function is called every time a loop over the
tree starts. This is a convenient place to create your histograms.

e TSelector::Notify () : This function is called at the first entry of a
new tree in a chain.

e TsSelector::ProcessCut: This function is called at the beginning of
each entry to return a flag true if the entry must be analyzed.

e TSelector::ProcessFill: This function is called in the entry loop
for all entries accepted by Select.

e TSelector::Terminate: This function is called at the end of a loop
on a TTree. This is a convenient place to draw and fit your histograms.

The TSelector, unlike the resulting class from MakeClass, separates the
processing into a ProcessCut and ProcessFill, so that we can limit
reading the branches to the ones we need.

To create a selector call:

root[] T->MakeSelector ("MySelector");
Where T is the TTree and MySelector is the name of created class and
the name of the .h and .C files.
The resulting TSelector is the argumentto TTree: : Process. The
argument can be the file name or a pointer to the selector object.
root[] T->Process("MySelector.C",1000,100) ;
This call will interpret the class defined in MySelector.C and process 1000
entries beginning with entry 100. The file name can be appended with a "+"
ora"++"to use ACLiC.
root[] T->Process("MySelector.C++",1000,100);
When appending a "++", the class will be compiled and dynamically loaded.
root[] T->Process("MySelector.C+",1000,100) ;

When appending a "+", the class will also be compiled and dynamically
loaded. When it is called again, it recompiles only if the macro
(MySelector.C) has changed since it was compiled last. If not it loads the
existing library.

TTree: :Process is aware of PROOF, ROOT's parallel processing facility. If
PROOF is setup, it divides the processing amongst the slave CPUs.

Trees

December 2001 - version 3.1d 265

Performance Benchmarks

The program SROOTSYS/test/bench.cxx compares the I/O performance
of STL vectors to the ROOT native TClonesArrays collection class. It
creates trees with and without compression for the following cases:
vector<THit>, vector<THit*>, TClonesArray (TObjHit) not split
TClonesArray (TObJjHit) split.

% Besultz of Boot benchmark M= E3
FEile Edit Wiew Options [nspect Classes Help

Comparing STL vector with TClonesArray: Root 3.0103
IRIX64 fnpat1 6.5 01221553 IP27
Reference machine penotebrun.cern.ch RedHat Linux 6.1
(Pentium Il 650 Mhz 256 Mbytes RAM, IDE disk)
(send your results to rootdev@root.cern.ch]

| le gend | | Time to fill collections |
. : . B .
= 4
g
w 3
2
1
0
| File size no compression | |
2 M i : s b
= =
Z 30 B
] [}
Z 9 =

-
[—]

= R o o

=
2
m
g
2
=
g
=
=]
[x]
=]
2
=
=
1]
2]
o
=]
=

4

aecanda
aecanda

3
2
1
0

Time to read no compression |

Time to read compression1 |

aecanda
aecanda

The graphs show the two columns on the right which represent the split and
non-split TClonesArray, are significantly lower than the vectors. The most
significant difference is when reading a file without compression.

The file size with compression, write times with and without compression and
the read times with and without compression all favor the TClonesArray.

266 December 2001 - version 3.1d Trees

Impact of Compression on 1/O

This benchmark illustrates the pros and cons of the compression option. We
recommend using compression when the time spent in I/O is small compared
to the total processing time. In this case, if the /O operation is increased by a
factor of 5 it is still a small percentage of the total time and it may very well
save a factor of 10 on disk space. On the other hand if the time spend on 1/O

is large, compression may slow down the program's performance.

The standard test program $ROOTSYS/test/Event was used in various
configurations with 400 events. The data file contains a TTree. The program

was invoked with:

Event 400 comp split

e comp =0 means: no compression at all.
e comp =1 means: compress everything if split = 0.

e comp =1 means: compress only the tree branches with
integers if split = 1.
e comp =2 means: compress everything if split=1.

split = 0 : the full event is serialized into one single buffer.
split = 1 : the event is split into branches. One branch for each data

member of the Event class. The list of tracks (a TClonesArray) has
the data members of the Track class also split into individual buffers.

These tests were run on Pentium Il CPU with 650 Mhz.

Event File Size Total Time to | Effective Total time Total time to
Parameters write Time to write | to read All read Sample
(MB/sec) (MB/sec) (MB/sec) (MB/sec)
Comp=0 19.75 MB 6.84 s. 3.56 s. 0.79 s. 0.79 s.
Split =1 (2.8 MB/s) (5.4 MB/s) (24.2 MB/s) | (24.2 MB/s)
Comp =1 17.73 MB 6.44 s. 4.02s. 0.90 s. 0.90 s.
Split =1 (3.0 MB/s) (4.8 MB/s) (21.3 MB/s) | (21.3 MB/s)
Comp =2 13.78 MB 11.34 s. 9.51s. 217 s. 217 s.
Split =1 (1.7 MB/s) (2.0 MB/s) (8.8 MB/s) | (8.8 MB/s)
The Total Time is the real time in seconds to run the program.
Effective time is the real time minus the time spent in non I/O operations
(essentially the random number generator).
The program Event generates in average 600 tracks per event. Each track
has 17 data members.
The read benchmark runs in the interactive version of ROOT. The Total time
to read All is the real time reported by the execution of the script
&ROOTSYS/test/eventa. We did not correct this time for the overhead
coming from the interpreter itself.
The Total time to read Sample is the execution time of the script
SROOTSYS/test/eventb. This script loops on all events. For each event,
the branch containing the number of tracks is read. In case the number of
tracks is less than 585, the full event is read in memory. This test is obviously
not possible in non-split mode. In non-split mode, the full event must be read
in memory.
Trees December 2001 - version 3.1d 267

The times reported in the table correspond to complete 1/0 operations
necessary to deal with machine independent binary files. On Linux, this
also includes byte-swapping operations. The ROOT file allows for direct
access to any event in the file and also direct access to any part of an event
when split=1.

Note also that the uncompressed file generated with split=0 is 48.7 Mbytes
and only 47.17 Mbytes for the option split=1. The difference in size is due to
the object identification mechanism overhead when the event is written to a
single buffer. This overhead does not exist in split mode because the branch
buffers are optimized for homogeneous data types.

You can run the test programs on your architecture. The program Event will
report the write performance. You can measure the read performance by
executing the scripts eventa and eventb. The performance depends not
only of the processor type, but also of the disk devices (local, NFS, AFS,
etc.).

Chains
A TChain object is a list of ROOT files containing the same tree. As an
example, assume we have three files called filel.root, file2.root,
file3.root. Each file contains one tree called "T". We can create a chain
with the following statements:
TChain chain ("T"); // name of the tree is the argument

chain.Add ("filel.root");
chain.Add ("file2.root");
chain.Add ("file3.root");

The name of the TChain will be the same as the name of the tree, in this
case it will be "T" . Note that two objects can have the same name as long
as they are not histograms in the same directory, because there, the
histogram names are used to build a hash table.

The class TChain is derived from the class TTree. For example, to generate
a histogram corresponding to the attribute "x" in tree "T" by processing
sequentially the three files of this chain, we can use the TChain: :Draw

method.

chain.

Draw ("x") ;

The following statements illustrate how to set the address of the object to be
read and how to loop on all events of all files of the chain.

268

December 2001 - version 3.1d Trees

TChain chain ("T"); // create the chain with tree '"T"
chain.Add ("filel.root"); // add the files

chain.Add ("file2.root");

chain.Add ("file3.root");

TH1F *hnseg = new TH1F ("hnseg",
"Number of segments for selected tracks",5000,0,5000);

// create an object before setting the branch address
Event *event = new Event();

// Specify the address where to read the event object
chain.SetBranchAddress ("event", &event);

// Start main loop on all events
// In case you want to read only a few branches, use
// TChain: :SetBranchStatus to activate a branch.
Int t nevent = chain.GetEntries();
for (Int t i=0;i<nevent;i++) {
// read complete accepted event in memory
chain.GetEvent (1) ;
// Fill histogram with number of segments
hnseg->Fill (event->GetNseqg ()) ;
}

// Draw the histogram
hnseg->Draw () ;

TChain::AddFriend

A TChain has a list of friends similar to a tree (see TTree: :AddFriend).
You can add a friend to a chain with the TChain: :AddFriend method,
and you can retrieve the list of friends with

TChain: :GetListOfFriends.

This example has four chains each has 20 ROOT trees from 20 ROOT files.

TChain ch("t"); // a chain with 20 trees from 20 files
TChain chl ("t1");
TChain ch2 ("t2");
TChain ch3("t3");

Now we can add the friends to the first chain.

ch.AddFriend ("t1")
ch.AddFriend ("t2")
ch.AddFriend ("t3")

The parameter is the name of friend chain (the name of a chain is always the
name of the tree from which it was created).

The original chain has access to all variables in its friends. We can use the
TChain: : Draw method as if the values in the friends were in the original
chain.

Trees

December 2001 - version 3.1d 269

To specify the chain to use in the Draw method, use the syntax:

<chainname>.<branchname>.<varname>

If the variable name is enough to uniquely identify the variable, you can leave
out the chain and/or branch name.

For example, this generates a 3-d scatter plot of variable "var" in the
TChain ch versus variable vl in TChain t1 versus variable v2 in
TChain t2.

ch.Draw ("var:tl.v1l:t2.v2");

When a TChain: : Draw is executed, an automatic call to
TTree: :AddFriend connects the trees in the chain. When a chain is
deleted, its friend elements are also deleted.

Friends
< »
Chainch Chain ch1 Chain ch2 Chain ch3
entry # 1
entry # 2
entry #3 : : : L
file a file o file x filei
fileb file p filey file]
filec file q file z file k
entry #n

The number of entries in the friend must be equal or greater to the number of
entries of the original chain. If the friend has fewer entries a warning is given
and the resulting histogram will have missing entries.

For additional information see TTree: : AddFriends. A full example of a
tree and friends is in Example #3 (SROOTSYS/tutorials/tree3.c)in the
Tree section above.

270

December 2001 - version 3.1d Trees

13

Adding a Class

The Role of TObject

The light-weight TObject class provides the default behavior and protocol
for the objects in the ROOT system. Specifically, it is the primary interface to
classes providing object I/O, error handling, inspection, introspection, and
drawing. The interface to these service is via abstract classes.

Introspection, Reflection and Run Time Type
Identification

Introspection, which is also referred to as reflection, or run time type
identification (RTTI) is the ability of a class to reflect upon itself or to "look
inside itself. ROOT implements reflection with the TClass class. It
provides all the information about a class, a full description of data members
and methods, including the comment field and the method parameter types.
A class with the ClassDef macro, has the ability to obtain a TClass with the
IsA method.

TClass *cl = obj=2>IsA();

which returns a TClass. In addition an object can directly get the class name
and the base classes with:

const char* name = obj—2>ClassName () ;

which returns a character string containing the class name.

If the class is a descendent of TObject, you can check if an object inherits
from a specific class, you can use the InheritsFrom method. This method
returns kTrue if the object inherits from the specified class name or TClass.

Bool t b
Bool t b = obj=>InheritsFrom(TLine::Class());

obj=>InheritsFrom ("TLine") ;

ROOT and CINT rely on reflection and the class dictionary to identify the type
of a variable at run time.

With TObject inheritance come some methods that use Introspection to help
you see the data in the object or class. For instance:

Adding a Class

December 2001 - version 3.1d 271

obj=>Dump () ; // lists all data members and

obj=>Inspect () ; // opens a window to browser

obj—>DrawClass(); // Draws the class inheritance tree

// their current valsue

// the data members at all levels

For an example of obj->Inspect see "Inspecting ROOT Objects" in the
CINT chapter.

Collections

To store an object in a ROOT collection, it must be a descendent of
TObject. This is convenient if you want to store objects of different classes
in the same collection and execute the method of the same name on all
members of the collection. For example the list of graphics primitives are in a
ROOQOT collection called TList. When the canvas is drawn the Paint
method is executed on the entire collection. Each member may be a different
class, and if the Paint method is not implemented, TObject: : Paint will
be executed.

Input/Output

The TObject: :Write method is the interface to the ROOT I/O system. It
streams the object into a buffer using the Streamer method. It support cycle
numbers and automatic schema evolution (see the chapter on I/O).

Paint/Draw

These two graphics methods are defaults, their implementation in TObject
does not use the graphics subsystem. The TObject: : Draw method is
simply a call to AppendPad. The Paint method is empty. The default is
provided so that one can call Paint in a collection.

GetDrawOption

This method returns the draw option that was used when the object was
drawn on the canvas. This is especially relevant with histograms and graphs.

Clone/DrawClone

Two useful methods are Clone and DrawClone. The Clone method takes a
snapshot of the object with the Streamer and creates a new object. The
DrawClone method does the same thing and in addition draws the clone.

Browse

This method is called if the object is browse-able and is to be displayed in the
object browser. For example the TTree implementation of Browse, calls the
Browse method for each branch. The TBranch: : Browse method displays
the name of each leaf. For the object's Browse method to be called, the
IsFolder () method must be overridden to return true. This does not mean
it has to be a folder, it just means that it is browse-able.

272

December 2001 - version 3.1d Adding a Class

SavePrimitive

This method is called by a canvas on its list of primitives, when the canvas is
saved as a script. The purpose of SavePrimitve is to save a primitive as a
C++ statement(s). Most ROOT classes implement the SavePrimitive
method. It is recommended that the SavePrimitive is implemented in user
defined classes if it is to be drawn on a canvas. Such that the command
TCanvas: :SavelAs (Canvas.C) Wwill preserve the user-class object in the
resulting script.

GetObjectinfo

This method is called when displaying the event status in a canvas. To show
the event status window, select the Options menu and the EventStatus
item. This method returns a string of information about the object at position
(x, y). Every time the cursor moves, the object under the cursor executes the
GetObjectInfo method. The string is then shown in the status bar.

There is a default implementation in TObject, but it is typically overridden for
classes that can report peculiarities for different cursor positions (for example
the bin contents in a TH1).

IsFolder

By default an object inheriting from TObject is not brows-able, because
TObject::IsFolder () returns kFALSE. To make a class browse-able, the
IsFolder method needs to be overridden to return kTRUE.

In general, this method returns kTRUE if the object contains browse-able
objects (like containers or lists of other objects).

Bit Masks and Unique ID

A TObject descendent inherits two data members: £fBits and fUniquelID.

fBits: This 32-bit data member is to be used with a bit mask to get
information about the object. Bit 0 —7 are reserved by TObject. The
kMustClean, kCanDelete are used in TObject, these can be set by any
object and should not be reused.

These are the bits used in TObject:

i

enum EObjBits {

kCanDelete = BIT(0), // if object in a list can be deleted
kMustCleanup = BIT(3), // if object destructor must call

// RecursiveRemove ()
kCannotPick = BIT(6), // if object in a pad cannot be picked
kInvalidObject = BIT(13) // if object ctor succeeded but

// object should not be used

The remaining 24 bits can be used by other classes. Make sure there is no
overlap in any given hierarchy. For example TClass uses bit 12 and 13
kClassSaved and kIgnoreTObjectStreamer respectively.

The above bit 13 is set when an object could not be read from a ROOT file. It
will check this bit and skip to the next object on the file.

The TObject constructor initializes the £Bits to zero depending if the
object is created on the stack or allocated on the heap. When the object is

Adding a Class

December 2001 - version 3.1d 273

created on the stack, the kCanDelete bit is set to false to protect from
deleting objects on the stack. Of the status word the high 8 bits are reserved
for system usage and the low 24 bits are user settable.

fUniquelID: This data member can be used to give an object a unique
identification number. It is initialized to zero by the TObject constructor. This
data member is not used by ROOT.

These two data members are streamed out when writing an object to disk. If
you do not use them you can save some space and time by specifying:

MyClass::Class () ->IgnoreTObjectStreamer ()

This sets a bit in the TC1ass object.

If the file is compressed, the savings are minimal since most values are zero,
however, it saves some space when the file is not compressed.

A call to IgnoreObjectStreamer also prevents the creation of two
additional branches when splitting the object. If left alone, two branches
called fBits and fUniqueID will appear.

Motivation

If you want to integrate and use your classes with ROOT, to enjoy features
like, extensive RTTI (Run Time Type Information) and ROOT object I/O and
inspection, you have to add the following line to your class header files:

ClassDef (ClassName,ClassVersionID) //The class title

For example in TLine.h we have:

ClassDef (TLine,1) //A line segment

The ClassVersionID is used by the ROOT /O system. It is written on the
output stream and during reading you can check this version ID and take
appropriate action depending on the value of the ID (see the section on
Streamers in the Chapter Input/Output). Every time you change the data
members of a class, you should increase its ClassVersionID by one. The
ClassVersionID should be >=1.SetClassVersionID=0 in case you
don't need object I/O.

Similarly, in your implementation file you must add the statement:

ClassImp (ClassName)

For example in TLine.cxx:

ClassImp (TLine)

Note that you MUST provide a default constructor for your classes, i.e. a
constructor with zero parameters or with one or more parameters all with
default values in case you want to use object I/O. If not you will get a compile
time error.

The ClassDef and ClassImp macros are necessary to link your classes to
the dictionary generated by CINT.

274

December 2001 - version 3.1d Adding a Class

The ClassDef and ClassImp macros are defined in the file Rtypes . h.
This file is referenced by all ROOT include files, so you will automatically get
them if you use a ROOT include file.

The Default Constructor

ROOT object I/O requires every class to have a default constructor. This
default constructor is called whenever an object is being read from a ROOT
database. Be sure that you don't allocate any space for embedded pointer
objects in the default constructor. This space will be lost (memory leak) while
reading in the object. For example:

//
//

class T49Event : public TObject ({
private:
Int_t £Id;

TCollection *fTracks;

public:
T49Event () { fId = 0; fTrack = new TList; }

T49Event () { fId = 0; fTrack = 0; }

Error space for TList pointer will be lost

Correct default initialization of pointer

The memory will be lost because during reading of the object the pointer will
be set to the object it was pointing to at the time the object was written.

Create the £Track list when you need it, e.g. when you start filling the list or
in a not-default constructor.

if (!fTrack) fTrack = new TList;

Adding a Class

December 2001 - version 3.1d 275

rootcint: The CINT Dictionary Generator

In the following example we walk through the steps necessary to generate a
dictionary and I/O and inspect member functions.

Let start with a TEvent class, which contains a collection of TTracks:

#ifndef TEvent
#define TEvent

#include "TObject.h"
class TCollection;

class TTrack;

class TEvent : public TObject {

private:
Int t f1d; // event sequential id
Float t fTotalMom; // total momentum
TCollection *fTracks; // collection of tracks
public:

TEvent () { fId = 0; fTracks = 0; }
TEvent (Int_t id);
~TEvent () ;

void AddTrack (TTrack *t);

Int t GetId() const { return fId; }
Int t GetNoTracks () const;

void Print (Option_ t *opt="");
Float t TotalMomentum() ;

ClassDef (TEvent,l) //Simple event class

276 December 2001 - version 3.1d Adding a Class

And the TTrack header:

#ifndef TTrack
#define TTrack

#include "TObject.h"

class TEvent;

class TTrack public TObject {

TTrack (Int t id, Event *ev,

Float t Momentum() const;
TEvent *GetEvent () const { return fEvent; }
void Print (Option_ t *opt="");
ClassDef (TTrack,l) //Simple track class
}i
fendif

private:
Int t f1d; //track sequential id
TEvent *fEvent; //event to which track belongs
Float t £Px; //x part of track momentum
Float t f£fPy; //y part of track momentum
Float t f£fPz; //z part of track momentum
public:
TTrack() { fId = 0; fEvent = 0; fPx = fPy = fPz = 0;

}

Float t px,Float t py,Float t pz);

The things to notice in these header files are:

e The usage of the ClassDef macro
e The default constructors of the TEvent and TTrack classes

e Comments to describe the data members and the comment after the
ClassDef macro to describe the class

These classes are intended for you to create an event object with a certain id,
and then add tracks to it. The track objects have a pointer to their event. This

shows that the 1/O system correctly handles circular references.

Adding a Class December 2001 - version 3.1d

277

Next, the implementation of these two classes. Event . cxx:

#include <iostream.h>
#include "TOrdCollection.h"

#include "TEvent.h"
#include "TTrack.h"

ClassImp (TEvent)

and Track.cxx:

#include <iostream.h>
#include "TMath.h"
#include "Track.h"

#include "Event.h"

ClassImp (TTrack)

Now using rootcint we can generate the dictionary file.

Make sure you use a unique filename, because rootcint appends it to the
name of static function (G cpp reset tabableeventdict () and
G set cpp environmenteventdict ()).

rootcint eventdict.cxx -c TEvent.h TTrack.h

Looking in the file eventdict.C we can see, besides the many member
function calling stubs (used internally by the interpreter), the Streamer ()
and showMembers () methods for the two classes. Streamer () is used to
stream an object to/from a TBuffer and ShowMembers () is used by the
Dump () and Inspect () methods of TObject.

278 December 2001 - version 3.1d Adding a Class

Here is the TEvent: : Streamer method:

{

if

void TEvent::Streamer (TBuffer &R_b)

// Stream an object of class TEvent.

} else {

(R__b.IsReading()) {

Version t R v = R _Db.ReadVersion();
TObject::Streamer (R_ Db);

R b >> fId;

R b >> fTotalMom;

R b >> fTracks;

R b.WriteVersion (TEvent::IsA());
TObject::Streamer (R_ b);

R b << fId;

R b << fTotalMom;

R b << fTracks;

The TBuffer class overloads the operator<< () and operator>> () for
all basic types and for pointers to objects. These operators write and read
from the buffer and take care of any needed byte swapping to make the
buffer machine independent. During writing the TBuf fer keeps track of the
objects that have been written and multiple references to the same object are
replaced by an index. In addition, the object's class information is stored.

TEvent and TTracks need manual intervention. Cut and paste the
generated Streamer () from the eventdict.C into the class' source file
and modify as needed (e.g. add counter for array of basic types) and disable
the generation of the Streamer () when using the LinkDef . h file for next
execution of rootcint.

In case you don't want to read or write this class (no 1/0) you can tell rootcint
to generate a dummy Streamer () by changing this line in the source file:

ClassDef (TEvent,O0)

If you want to prevent the generation of Streamer (), see the chapter
"Adding a Class with a Shared Library" below.

Adding a Class

December 2001 - version 3.1d 279

Adding a Class with a Shared Library

Step 1:
Define your own class in SClass.h and implementitin SClass.cxx. You
must provide a default constructor for your class.

#include <iostream.h>
#include "TObject.h"
class SClass : public TObject {

private:
Float t £X; //x position in centimeters
Float t fY; //y position in centimeters
Int t fTempValue; //! temporary state value
public:
SClass () { £fX = fYy = -1; }
void Print () const;

void SetX (float x) { fX = x; }
void SetY (float y) { fY = y; }

ClassDef (SClass, 1)

Step 2:
Add a call to the ClassDef macro to at the end of the class definition (i.e. in

the sClass.hfile). ClassDef (SClass, 1) .

Add a call to the C1assImp macro in the implementation file
(SClass .cxx).ClassImp (SClass)

SClass.cxx:

#include "SClass.h"
ClassImp (SClass);
void SClass::Print () const {

}

cout << "fX = " << fX << ", fY = " << fY << endl;

You can add a class without using the ClassbDef and ClassImp macros,
however you will be limited. Specifically the object I/O features of ROOT wiill
not be available to you for these classes (see the chapter "CINT the C++
Interpreter").

The ShowMembers() and Streamer() method, as well as the >>
operator overloads, are implemented only if you use ClassDef and
ClassImp.

See http://root.cern.ch/root/html/Rtypes.h for the definition of C1assbef and
ClassImp.

To exclude a data member from the Streamer, add a ! as the first character in
the comments of the field:

Int t fTempValue; //! temporary state value

280

December 2001 - version 3.1d Adding a Class

The LinkDef.h File

Step 3:
The LinkDef .h file tells rootcint for which classes to generate the
method interface stubs.

#ifdef _ CINT

#pragma link off all globals;
#pragma link off all classes;
#pragma link off all functions;
#pragma link C++ class SClass;
#endif

Three options can trail the class name:

e - :tells rootcint notto generate the Streamer () method for this
class. This is necessary for those classes that need a customized
Streamer () method.

#pragma link C++ class SClass-; // no streamer

e ! :tells rootcint not to generate the operator>> (TBuffer &b,
MyClass *&ob7j) method for this class. This is necessary to be able to
write pointers to objects of classes not inheriting from TObject.

or

#pragma link C++ class SClass!; // no >> operator

#pragma link C++ class SClass-!; // no Streamer no >>
operator

e +:in ROOT version 1 and 2 tells rootcint to generate a Streamer ()
with extra byte count information. This adds an integer to each object in
the output buffer, but it allows for powerful error correction in case a
Streamer () method is out of sync with data in the file. The + option is
mutual exclusive with both the - and ! options.

IMPORTANT NOTE: In ROOT Version 3, a "+" after the class name tells
rootcint to use the new I/O system. The byte count check is always
added.

#pragma link C++ class SClass+; // add byte count

For information on Streamers see the section on Streamers in the
Input/Output chapter.

To get help on rootcint type: rootcint -2 on the UNIX command line.

The Order Matters

When using templated classes, the order of the pragma statements matters.
For example, here is a templated class Tmp1 and a normal class Norm which
holds a specialized instance of a Tmp1:

Adding a Class

December 2001 - version 3.1d 281

class Norm {
private:
Tmpl<int>* fIntTmpl;
public:

i

Then in Linkdef .h the pragma statements must be ordered by listing all
specializations before any classes which need them:

// Correct Linkdef.h ordering

#pragma link C++ class Tmpl<int>;
#pragma link C++ class Norm;

And not vice versa:

// Bad Linkdef.h ordering

#pragma link C++ class Norm;
#pragma link C++ class Tmpl<int>;

In this later case, rootcint generates Norm: : Streamer () which makes
reference to Tmpl<int>::Streamer (). Then rootcint gets to process
Tmpl<int> and generates a specialized Tmpl<int>::Streamer ()
function.

The problem is, when the compiler finds the first
Tmpl<int>::Streamer (), it will instantiate it. But, later in the file

it finds the specialized version that rootcint generated. This causes
the error.

However, if the Linkdef.h order is reversed then rootcint can generate
the specialized Tmpl<int>: :Streamer () before it is needed (and thus
never instantiated by the compiler).

Step 4: Compile the class using the Makefile

In the Makefile call rootcint to make the dictionary for the class. Call it
SClassDict.cxx. The rootcint utility generates the Streamer(), TBuffer
soperator>> () and ShowMembers() methods for ROOT classes.

For more information on rootcint follow this link:
http://root.cern.ch/root/RootCintMan.html

Also, see the SROOTSYS/test directory Makefile, Event.cxx, and
Event.h for an example.

282 December 2001 - version 3.1d Adding a Class

gmake —-f Makefile

Load the shared library:

root [] .L SClass.so

root [] SClass *sc = new SClass()

root [] TFile *f = new TFile("Afile.root", "UPDATE") ;
root [] se->Write()

Adding a Class with ACLiC

Step 1. Define your class

#include "TObject.h"
// define the ABC class and make it inherit
// from TObject so that we can write ABC to a ROOT file
class ABC : public TObject {
public:
Float t a,b,c,p;
ABC() :a(0),b(0),c(0),p(0){};

// Define the class for the cint dictionary
ClassDef (ABC,1)
i

// Call the ClassImp macro to give the ABC class RTTI
// and full I/O capabilities.

#if !defined(CINT_)
ClassImp (ABC) ;
#endif

Step 2: Load the ABC class in the script.

// Check if ABC is already loaded
if (!TClassTable::GetDict ("ABC")) {
gROOT->Macro ("ABCClass.C++") ;
}
// Use the Class
ABC *v = new ABC;
v->p = (sqrt((v->a * v->a)+ (v->b * v->b)+(v->c * v->cC)));

Adding a Class December 2001 - version 3.1d 283

14 Collection Classes

Collections are a key feature of the ROOT system. Many, if not most, of the
applications you write will use collections. If you have used parameterized
C++ collections or polymorphic collections before, some of this material will
be review. However, much of this chapter covers aspects of collections
specific to the ROOT system. When you have read this chapter, you will

know

e How to create instances of collections

e The difference between lists, arrays, hash tables, maps, etc.

¢ How to add and remove elements of a collection

e How to search a collection for a specific element

e How to access and modify collection elements

e How to iterate over a collection to access collection elements

e How to manage memory for collections and collection elements

e How collection elements are tested for equality (IsEqual ())

e How collection elements are compared (Compare ()) in case of sorted
collections

e How collection elements are hashed (Hash ()) in hash tables

Understanding Collections

A collection is a group of related objects. You will find it easier to manage a
large number of items as a collection. For example, a diagram editor might
manage a collection of points and lines. A set of widgets for a graphical user
interface can be placed in a collection. A geometrical model can be described
by collections of shapes, materials and rotation matrices. Collections can
themselves be placed in collections. Collections act as flexible alternatives to
traditional data structures of computers science such as arrays, lists and
trees.

General Characteristics

The ROOT collections are polymorphic containers that hold pointers to
TObjects, SO:

e They can only hold objects that inherit from TObject
e They return pointers to TObjects, that have to be cast back to the

correct subclass

Collections are dynamic, they can grow in size as required.

Collection Classes December 2001 - version 3.1d 285

Collections themselves are descendants of TObject so can themselves be
held in collections. It is possible to nest one type of collection inside another
to any level to produce structures of arbitrary complexity.

Collections don’t own the objects they hold for the very good reason that the
same object could be a member of more than one collection. Object
ownership is important when it comes to deleting objects; if nobody owns the
object it could end up as wasted memory (i.e. a memory leak) when no
longer needed. If a collection is deleted, its objects are not. The user can
force a collection to delete its objects, but that is the user’s choice.

Determining the Class of Contained Objects

Most containers may hold heterogeneous collections of objects and then it is
left to the user to correctly cast the TObject pointer to the right class.
Casting to the wrong class will give wrong results and may well crash the
program! So the user has to be very careful. Often a container only contains
one class of objects, but if it really contains a mixture, it is possible to ask
each object about its class using the InheritsFrom () method.

For example if myObject is a TObject pointer:

if

}

(myObject->InheritsFrom("TParticle") {
printf ("myObject is a TParticle\n");

As the name suggests, this test works even if the object is a subclass of
TParticle. The member function IsA () can be used instead of
InheritsFrom() to make the test exact. The InheritsFrom () and
IsA () methods use the extensive Run Time Type Information (RTTI)
available via the ROOT meta classes.

Types of Collections

The ROOT system implements the following basic types of collections:
unordered collections, ordered collections and sorted collections. This picture
shows the inheritance hierarchy for the primary collection classes. All primary
collection classes derive from the abstract base class TCollection.

TCollection

b
| |

TSeqCollection| THashTable TMap
TList TOrdCollection TObjArray TBtree

: i

TSortedList

THashList TClonesArray

286

December 2001 - version 3.1d Collection Classes

Ordered Collections (Sequences)

Sequences are collections that are externally ordered because they maintain
internal elements according to the order in which they were added. The
following sequences are available:

e TList

e THashList

e TOrdCollection
e TObjArray

e TClonesArray

The TOrdCollection, TObjArray as well as the TClonesArray can be
sorted using their Sort () member function (if the stored items are sort able).
Ordered collections all derive from the abstract base class
TSeqgCollection.

Sorted Collesction
Sorted collections are ordered by an internal (automatic) sorting mechanism.
The following sorted collections are available:

e TSortedList
(] TBtree

The stored items must be sort able.

Unordered Collections

Unordered collections don't maintain the order in which the elements were
added, i.e. when you iterate over an unordered collection, you are not likely
to retrieve elements in the same order they were added to the collection. The
following unordered collections are available:

e THashTable
e TMap

Iterators: Processing a Collection

The concept of processing all the members of a collection is generic, i.e.
independent of any specific representation of a collection. To process each
object in a collection one needs some type of cursor that is initialized and
then steps over each member of the collection in turn. Collection objects
could provide this service but there is a snag: as there is only one collection
object per collection there would only be one cursor. Instead, to permit the
use of as many cursors as required, they are made separate classes called
iterators. For each collection class there is an associated iterator class that
knows how to sequentially retrieve each member in turn. The relationship
between a collection and its iterator is very close and may require that the
iterator has full access to the collection (i.e. it is a friend class). In general
iterators will be used via the TIter wrapper class.

For example:
e TList TListIter
e TMap TMapIlter

Collection Classes December 2001 - version 3.1d 287

Foundation Classes

All collections are based on the fundamental classes: TCollection and
TIterator. They are so generic that it is not possible to create objects from
them; they are only used as base classes for other classes (i.e. they are
abstract base classes).

TCollection

The TCollection class provides the basic protocol (i.e. the minimum set of
member functions) that all collection classes have to implement. These

include:

e Add () Adds another object to the collection.

® GetSize() Returns the number of objects in the collection.

e Clear () Clears out the collection, but does not delete the
removed objects.

e Delete () Clears out the collection and deletes the removed
objects. This should only be used if the collection owns
its objects (which is not normally the case).

e FindObject () Find an object given either its name or address.

e MakeIterator () Returns an iterator associated with the collection.

e Remove () Removes an object from the collection.

Coming back to the issue of object ownership. The code example below
shows a class containing three lists, where the £Tracks list is the owning
collection and the other two lists are used to store a sub-set of the track
objects. In the destructor of the class the Delete () method is called for the
owning collection to delete correctly all its track objects.

To delete the objects in the container, do ' fTrack->Delete () '. To delete
the container itself do 'delete fTracks'.

class TEvent : public TObject {

private:
TList *fTracks; //list of all tracks
TList *fVertexl; //subset of tracks part of vertexl
TList *fVertex2; //subset of tracks part of vertex2

i

TEvent: : ~TEvent ()

{
fTracks->Delete(); delete fTracks;
delete fVertexl; delete fVertex2;

Tlterator

The TIterator class defines the minimum set of member functions that all
iterators must support. These include:

e Next () return the next member of the collection or 0 if no more
members.
e Reset () reset the iterator so that Next () returns the first object.

288

December 2001 - version 3.1d Collection Classes

A Collectable Class

By default, all objects of TObject derived classes can be stored in ROOT
containers. However, the TObject class provides some member functions
that allow you to tune the behavior of objects in containers. For example, by
default two objects are considered equal if their pointers point to the same
address. This might be too strict for some classes where equality is already
achieved if some or all of the data members are equal. By overriding the
following TObject member functions, you can change the behavior of
objects in collections:

. IsEqual () is used by the FindObject () collection method. By
default, IsEqual () compares the two object pointers.
. Compare () returns —1, 0 or 1 depending if the object is smaller,

equal or larger than the other object. By default, a
TObject has not a valid Compare () method.

. IsSortable () returns true if the class is sort able (i.e. if it has a valid
Compare () method). By default, a TObject is not
sort able.

3 Hash () returns a hash value. It needs to be implemented if an
object has to be stored in a collection using a hashing
technique, like THashTable, THashList and TMap.
By default, Hash () returns the address of the object. It
is essential to choose a good hash function.

The example below shows how to use and override these member functions.

// TObjNum is a simple container for an integer.
class TObjNum : public TObject {
private:

int num;

public:
TObjNum(int 1 = 0) : num(i) { }
~TObjNum () { }
void SetNum(int i) { num = i; }
int GetNum() const { return num; }
void Print (Option_t *){ printf("num = %d\n", num); }

Bool_t IsEqual (TObject *obj)

Bool_t IsSortable() const { return kTRUE; }
Int_t Compare (TObject *obj)

Ulong_t Hash() { return num; }

{ return num == ((TObjNum*)obj)->num; }

{ 1f (num < ((TObjNum*)obj)->num)
return -1;

else if (num > ((TObjNum*)obj)->num)
return 1;
else

return 0; }

Collection Classes December 2001 - version 3.1d 289

The Tlter Generic lterator

As stated above, the TIterator class is abstract; it is not possible to create
TIterator objects. However, it should be possible to write generic code to
process all members of a collection so there is a need for a generic iterator
object. A TIter object acts as generic iterator. It provides the same Next ()
and Reset () methods as TIterator although it has no idea how to
support them! It works as follows:

e Tocreate a TIter object its constructor must be passed an object that
inherits from TCollection. The TIter constructor calls the
MakeIterator () method of this collection to get the appropriate
iterator object that inherits from TIterator.

e The Next () and Reset () methods of TIter simply call the Next ()
and Reset () methods of the iterator object.

So TIter simply acts as a wrapper for an object of a concrete class
inheriting from TIterator.

To see this working in practice, consider the TObjArray collection. Its
associated iterator is TObjArrayIter. Suppose myarray is a pointer to a
TObjArray, i.e

TObjArray *myarray;
Which contains MyClass objects. To create a TIter object called myiter:

TIter myiter (myarray) ;

myarray myiter

(3) MakeIteraflor

TObjArray @4) | TObjArraylter

----------’I

. 2) MakeIterat
TCollection “ Tlter

(1) TIter myiter (myarray)

As shown in the diagram, this results in several methods being called:
(1) The TIter constructoris passed a TObjArray

(2) TIter asks embedded TCollection to make an iterator

(3) TCollection asks TObjArray to make an iterator
(

4) TObjArray returns a TObjArraylter.

290

December 2001 - version 3.1d Collection Classes

Now define a pointer for MyClass objects and set it to each member of the
TObjArray:

while

}

MyClass *myobject;

// process myobject

((myobject = (MyClass *) myiter.Next())) {

The heart of this is the myiter.Next () expression which does the

myiter

5) MyClass

4‘............... N‘IIIIIIIIIIIIII

(1) Next () I

) MyClass TObjArraylter

(3) Next ()

Tlter

IS0 Tlterator

following:

(1) The Next () method of the TIter object myiter is called

(2) The TIter forwards the call to the TIterator embedded in the
TObjArraylter

(3) TIterator forwards the call to the TObjArrayIter

(4) TobjArrayIter finds the next MyClass object and returns it

(5) Titer passes the MyClass object back to the caller

Sometimes the TIter object is called next, and then instead of writing:
next.Next ()

Which is legal, but looks rather odd, iteration is written as:

next ()

This works because the function operator () is defined for the TIter class
to be equivalent to the Next () method.

Collection Classes December 2001 - version 3.1d 291

The TList Collection

A TList is a doubly linked list. Before being inserted into the list the object
pointer is wrapped in a TObjLink object that contains, besides the object
pointer also a previous and next pointer.

Objects are typically added using:

e Add()
e AddFirst (), AddLast()
e AddBefore (), AddAfter()

Main features of TList: very low cost of adding/removing elements
anywhere in the list.

Overhead per element: 1 TObjLink, i.e. two 4 (or 8) byte pointers + pointer
to vtable =12 (or 24) bytes.

class TList : public TSeqCollection

{
private:
TObjLink *fLast;
TODbjLink *fFirst; ¢ l
. TObjLink TObjLink TObjLink
I8
fPrev |« fPrev |« fPrev
class TObjLink { . >
friend class TList; fNext > MNext > MNext
private: fObject fObject fObject
TObjLink *fPrev;
TODbjLink *fNext; l l l
TObject *fObject;
e obj obj obj

};...

The diagram below shows the internal data structure of a TList:

292

December 2001 - version 3.1d Collection Classes

Iterating over a TList

There are basically four ways to iterate over a TList:

(1) Using the ForEach script:

GetListOfPrimitives () ->ForEach (TObject, Draw) () ;

(2) Using the TList iterator TListIter (via the wrapper class TIter):

TIter next (GetListOfTracks());
while ((TTrack *obj = (TTrack *)next()))
obj->Draw () ;

(3) Using the TObjLink list entries (that wrap the TObject*):

TObjLink *1nk = GetListOfPrimitives ()->FirstLink();
while (1lnk) {

Ink->GetObject () ->Draw () ;

1Ink = 1lnk->Next ();

(4) Usingthe TList's After () and Before () member functions:

TFree *idcur = this;
while (idcur) {

idcur = (TFree*)GetListOfFree ()->After (idcur);

Method 1 uses internally method 2.
Method 2 works for all collection classes. TIter overloads operator () .
Methods 3 and 4 are specific for TList.

Methods 2, 3 and 4 can also easily iterate backwards using either a
backward TIter (using argument kIterBackward) or by using
LastLink () and 1nk->Prev () or by using the Before () method.

Collection Classes December 2001 - version 3.1d 293

The TObjArray Collection

A TObjArray is a collection which supports traditional array semantics via
the overloading of operator[]. Objects can be directly accessed via an
index. The array expands automatically when objects are added.

At creation time one specifies the default array size (default = 16) and lower
bound (default = 0). Resizing involves a re-allocation and a copy of the old
array to the new. This can be costly if done too often. If possible, set initial
size close to expected final size. Index validity is always checked (if you are
100% sure and maximum performance is needed you can use
UnCheckedAt () instead of At () or operator[]).

If the stored objects are sort able the array can be sorted using Sort ().
Once sorted, efficient searching is possible via the BinarySearch ()
method.

Iterating can be done using a TIter iterator or via a simple for loop:

for

(int 1 = 0; 1 <= fArr.GetLast(); 1i++)
if ((track = (TTrack*)fArr[i])) // or fArr. At (i)
track->Draw () ;

class TObjArray : public TSeqCollection {

private:
TObject **fCont; » —— 0obj
—1—» obj
}... 5
’ —+— obj
——» obj
0
0

Main features of TObjArray: simple, well known array semantics.
Overhead per element: none, except possible over sizing of fCont.

The diagram below shows the internal data structure of a TObjArray:

294

December 2001 - version 3.1d Collection Classes

TClonesArray — An Array of Identical Objects

A TClonesArray is an array of identical (clone) objects. The memory for the
objects stored in the array is allocated only once in the lifetime of the clones
array. All objects must be of the same class and the object must have a fixed
size (i.e. they may not allocate other objects). For the rest this class has the

class TClonesArray : public TObjArray {
private:
TObjArray *fKeep; ————
TClass *fClass; fCont

U

space for identical
objects of type fClass
same properties as a TObjArray.

The class is specially designed for repetitive data analysis tasks, where in a
loop many times the same objects are created and deleted.

The diagram below shows the internal data structure of a TClonesArray:

The Idea Behind TClonesArray

To reduce the very large number of new and delete calls in large loops like
this (O(100000) x O(10000) times new/delete):

TObjArray a(10000);

while (TEvent *ev (TEvent *)next ()) { // 0(100000)
for (int i1 = 0; i < ev->Ntracks; i++) { // 0(10000)
al[i] = new TTrack(x,v,2z,...);

}

a.Delete();

Collection Classes December 2001 - version 3.1d 295

You better use a TClonesArray which reduces the number of new/delete
calls to only O(10000):

TClonesArray a("TTrack", 10000);

while (TEvent *ev = (TEvent *)next()) ({ // 0(100000)
for (int 1 = 0; i < ev->Ntracks; i++) { // 0(10000)
new(a[i]) TTrack(x,vy,z,...);

}

a.Delete();

Considering that a pair of new/delete calls on average cost about 70 pus,
O(109) new/deletes will save about 19 hours.

For the other collections see the class reference guide on the web and the
test program SROOTSYS/test/tcollex.cxx.

Template Containers and STL

Some people dislike polymorphic containers because they are not truly “type
safe”. In the end, the compiler leaves it the user to ensure that the types are
correct. This only leaves the other alternative: creating a new class each time
a new (container organization) / (contained object) combination is needed. To
say the least this could be very tedious. Most people faced with this choice
would, for each type of container:

1. Define the class leaving a dummy name for the contained object
type.

2. When a particular container was needed, copy the code and then do
a global search and replace for the contained class.

C++ has a built in template scheme that effectively does just this. For
example:

template<class T>

class ArrayContainer {
private:
T *member[10];

}s

This is an array container with a 10-element array of pointers to T, it could
hold up to 10 T objects. This array is flawed because it is static and hard-
coded, it should be dynamic. However, the important point is that the
template statement indicates that T is a template, or parameterized class. If
we need an ArrayContainer for Track objects, it can be created by:

ArrayContainer<Track> MyTrackArrayContainer;

C++ takes the parameter list, and substitutes Track for T throughout the
definition of the class ArrayContainer, then compiles the code so
generated, effectively doing the same we could do by hand, but with a lot less
effort. This produces code that is type safe, but does have different
drawbacks:

o Templates make code harder to read.

296

December 2001 - version 3.1d Collection Classes

At the time of writing this documentation, some compilers can be
very slow when dealing with templates.

It does not solve the problem when a container has to hold a
heterogeneous set of objects.

The system can end up generating a great deal of code; each
container/object combination has its own code, a phenomenon that is
sometimes referred to as code bloat.

The Standard Template Library (STL) is part on ANSI C++, and includes a
set of template containers.

Collection Classes

December 2001 - version 3.1d 297

15

Physics Vectors

The physics vector classes describe vectors in three and four dimensions
and their rotation algorithms. The classes were ported to root from CLHEP
see:
http://wwwinfo.cern.ch/asd/Ihc++/clhep/manual/UserGuide/Vector/vector.html

The Physics Vector Classes

There are four classes in this package. They are:

TVector3: A general tree-vector. A TVector3 may be expressed in
Cartesian, polar, or cylindrical coordinates. Methods include dot and
cross products, unit vectors and magnitudes, angles between vectors,
and rotations and boosts. There are also functions of particular use to
HEP, like pseudo-rapidity, projections, and transverse part of a
TVector3, and kinetic methods on 4-vectors such as Invariant Mass
of pairs or containers of particles.

TLorenzVector: a general four-vector class, which can be used either
for the description of position and time (x, y, =z, t)ormomentum and

energy (px, py, pz, E).
TRotation: a class describing a rotation of a Tvector3 object.

TLorenzRotation: a class to describe the Lorentz transformations
including Lorentz boosts and rotations.

There is also a TVector2, it is a basic implementation of a vector in two
dimensions and not part of the CLHEP translation.

Physics Vectors

December 2001 - version 3.1d 299

TVector3

E @
"
Y

TVector3 is a general three vector class,
which can be used for description of different
vectors in 3D. Components of three vector:

X ,Y ,Z - basic components

6 = azimuth angle

¢ = polar angle

magnitude = mag = sqrt(x? + y? + Z°)
transverse component = perp = sqrt(x* + y%)

Using the Tvector3 class you should
remember that it contains only common
features of three vectors and lacks methods
specific for some particular vector values.
For example, it has no translate function
because translation has no meaning for
vectors.

Declaration / Access to the components

TVector3 has been implemented as a vector of three Double t variables,
representing the Cartesian coordinates. By default the values are initialized to
zero, however you can change them in the constructor:

TVector3 vl; // vl =
TVector3 v2(1); // v2 =
TVector3 v3(1,2,3); // v3 =
TVector3 v4 (v2); // v4 =

(0,0,0)

(1,0,0)

(1,2,3)
v2

It is also possible (but not recommended) to initialize a Tvector3 with a

Double torFloat t C array.

You can get the components by name or by index:

xx = v1.X(); or xx = v1(0);
yy = v1.Y(); yy = v1(1);
zz = v1.Z2(); zz = v1(2);

300 December 2001 - version 3.1d Physics Vectors

The methods SetX (), SetY (), SetZ()

the components:

and SetXYZ () allows you to set

vl.SetX(1l.);
vl.SetXYz (1.,

vl.SetY (2.
2.,3.);

);

vl.SetZ(3.);

Other Coordinates

To get information on the Tvector3 in spherical (rho, phi, theta) or
cylindrical (z, r, theta) coordinates, the following methods can be used.

Double t m = v.Mag();

// get magnltude (=rho=Sqrt (x*x+y*y+z*z)))

Double t m2 = v.Mag2(); // get magnitude squared
Double_t t = v.Theta(); // get polar angle

Double t ct = v.CosTheta();// get cos of theta
Double t p = v.Phi(); // get azimuth angle
Double t pp = v.Perp(); // get transverse component
Double t pp2= v.Perp2(); // get transverse squared

It is also possible to get the transverse component with respect to another

Do
Do

vector:
uble t ppvl = v.Perp(vl);
uble t pp2vl = v.Perp2(vl);
The pseudo-rapidity (eta = -1n (tan (phi/2)))canbegetbyEta ()

or PseudoRapidity ():

Double t eta = v.PseudoRapidity();

These setters change one of the non-Cartesian coordinates:
v.SetTheta(.5); // keeping rho and phi
v.SetPhi (.8); // keeping rho and theta
v.SetMag (10.) ; // keeping theta and phi
v.SetPerp(3.); // keeping z and phi

Arithmetic / Comparison

The Tvector3 class has operators to add, subtract, scale and compare

vectors:

v3 = -vl;

vl = v2+v3;

vl += v3;

vl = vl - v3

vl -= v3;

vl *= 10;

vl = 5*v2;

if (vl == v2) { }
if(vl !'= v2) { }

Physics Vectors

December 2001 - version 3.1d 301

Related Vectors

v2 = v1.Unit(); // get unit vector parallel to vl
v2 = v1.0Orthogonal(); // get vector orthogonal to vl

Scalar and Vector Products

s = vl.Dot (v2); // scalar product
s = vl * v2; // scalar product
v = vl.Cross(v2); // vector product

Angle between Two Vectors

Double t a = vl.Angle(v2);

Rotation around Axes

v.RotateX(.5);
v.RotateY (TMath::Pi());
v.RotateZ (angle) ;

Rotation around a Vector

vl.Rotate (TMath::Pi() /4, v2); // rotation around v2

Rotation by TRotation

TVector3 objects can be rotated by TRotation objects using the
Transform() method, the operator *=, orthe operator * of the
TRotation class. See the later section on TRotation.

TRotation m;

vl.transform(m) ;
vl = m*vl;
vl *= m; // vl = m*vl

Transformation from Rotated Frame

This code transforms v1 from the rotated frame (z ' parallel to direction, x' in
the theta plane and y' in the xy plane as well as perpendicular to the theta
plane) to the (x, y, z) frame.

TVector3 direction = v.Unit ()
v1l.RotateUz (direction) ;
// direction must be TVector3 of unit length

302 December 2001 - version 3.1d Physics Vectors

TRotation

The TRotation class describes a rotation of Tvector3 object. Itisa 3 * 3
matrix of Double t:

It describes a so-called active rotation, i.e. a rotation of objects inside a static
system of coordinates. In case you want to rotate the frame and want to know
the coordinates of objects in the rotated system, you should apply the inverse
rotation to the objects. If you want to transform coordinates from the rotated
frame to the original frame you have to apply the direct transformation.

A rotation around a specified axis means counterclockwise rotation around
the positive direction of the axis.

Declaration, Access, Comparisons

TRotation r;
TRotation m(r); // m = r

// r initialized as identity

There is no direct way to set the matrix elements - to ensure that a
TRotation always describes a real rotation. But you can get the values by

if
if
if

Double t xx =

(rl=m) {..}
(r.IsIdentity())

with the methods xx () . .zz () orthe (,) operator:
r.XX(); // the same as xx=r(0,0)
xx = r(0,0);
(r==m) {...} // test for equality

// test for inequality
{...} // test for identity

Rotation Around Axes

The following matrices describe counter-clockwise rotations around the
coordinate axes and are implemented in: RotateX (), RotateY () and
RotateZ ():

| 1 0 0 \
Rx(a) = | 1 cos(a) -sin(a) |
| 0 sin(a) cos(a) \

| cos(a) 0 sin(a) |
Ry (a) = | 0 1 0 \
-sin(a) 0 cos(a)

| cos(a) —-sin(a) 0 |
Rz(a) = | cos(a) -sin(a) 0 |
\ 0 0 1 |
Physics Vectors December 2001 - version 3.1d 303

r.RotateX (TMath::Pi()); // rotation around the x-axis

Rotation around Arbitrary Axis

The Rotate () method allows you to rotate around an arbitrary vector (not
necessary a unit one) and returns the result.

r.Rotate (TMath::Pi()/3,TVector3(3,4,5));

It is possible to find a unit vector and an angle, which describe the same
rotation as the current one:

Double t angle;
TVector3 axis;
r.GetAngleAxis (angle,axis);

Rotation of Local Axes

The RotateAxes () method adds a rotation of local axes to the current
rotation and returns the result:

TVector3 newX(0,1,0);
TVector3 newY (0,0,1);
TVector3 newz(1,0,0);
a.RotateAxes (newX, newX, newZ) ;

Methods ThetaX (), ThetaY(), ThetaZ(), PhiX(),
PhiY (), PhiZz () return azimuth and polar angles of the rotated axes:

Double t tx,ty,tz,px,py,pz;
tx= a.ThetaX();

pz= a.PhiZ ();

Inverse Rotation

TRotation a,b;

b = a.Inverse(); // b is inverse of a, a is unchanged
a.Invert(); // invert a and set b = a

o
Il

Compound Rotations

The operator * has been implemented in a way that follows the
mathematical notation of a product of the two matrices which describe the
two consecutive rotations. Therefore the second rotation should be placed
first:

304 December 2001 - version 3.1d Physics Vectors

r =r2 * rl;

Rotation of TVector3

The TRotation class provides an operator * which allows to express a
rotation of a Tvector3 analog to the mathematical notation

x" | | xx xy xz |
l'y" | =1 yx yy yz
z' | | zx zy zz | |

TRotation r;
TVector3 v(1,1,1);
v =1r * v,

You can also use the Transform () method or the operator *= of the
TVector3 class:

TVector3 v;
TRotation r;
v.Transform(r) ;

Physics Vectors December 2001 - version 3.1d 305

TLorentzVector

TLorentzVector is a general four-vector class, which can be used either
for the description of position and time (x, y, =z, t)ormomentum and

energy (px, py, pz, E).

Declaration

TLorentzVector has been implemented as a seta Tvector3 and a
Double_t variable. By default all components are initialized by zero.

0.)

TLorentzVector vl; // initialized by (0., 0., 0.,

TLorentzVector v2 (1., 1., 1., 1.);
TLorentzVector v3(vl);
TLorentzVector v4 (TVector3(l., 2., 3.),4.);

For backward compatibility there are two constructors from a bouble t and
Float t C array.

Access to Components

There are two sets of access functions to the components of a
LorentzVector:X (), Y(), Z(), T() andPx(), Py (), Pz () and
E () . Both sets return the same values but the first set is more relevant for
use where TLorentzVector describes a combination of position and time
and the second set is more relevant where TLorentzVector describes
momentum and energy:

Double t xx =v.X();

Double t tt = v.T();
Double t px

Double t ee = v.E();

v.Px();

The components of TLorentzVector can also accessed by index:

XX
Yy
zZZ
tt

v(0); or xx = v[0];
v(1l); vy = vI[1];
v(2); zz = v[2];
v(3); tt = v[3];

You can use the vect () method to get the vector component of
TLorentzVector:

TVector3 p = v.Vect();

306

December 2001 - version 3.1d Physics Vectors

For setting components there are two methods: setx (), ..,

SetPx(),..:
v.SetX(1l.); or v.SetPx(1l.);
v.SetT(l.); v.SetE(l.);

To set more the one component by one call you can use the Setvect ()
function for the Tvector3 part or SetXYzT (), SetPxPyPzE (). For
convenience there is also a SetXYzZM () :

v.SetVect (TVector3(1,2,3));
v.SetXYZT (x,y,2,t);

v.SetPxPyPzE (px,py,pz,e);

v.SetXYZM (x,y,z,m);

// v=(x,y,z,e=Sqrt (x*x+y*y+z*z+m*m))

Vector Components in non-Cartesian Coordinates

There are a couple of methods to get and set the Tvector3 part of the
parameters in spherical coordinate systems:

Double t m, theta, cost, phi, pp, pp2, ppv2, pp2vZ;
m = v.Rho();

t = v.Theta();

cost = v.CosTheta();

phi = v.Phi();

v.SetRho (10.) ;

v.SetTheta (TMath::Pi()*.3);

v.SetPhi (TMath::Pi());

or get information about the r-coordinate in cylindrical systems:

Double t pp, pp2, ppv2, pp2vZ;

PP = v.Perp(); // get transvers component
pp2 = v.Perp2(); // get transverse component squared
ppv2 = v.Perp(vl); // get transvers component with

// respect to another vector

pp2v2 = v.Perp(vl);

for convenience there are two more set functions
SetPtEtaPhiFE (pt,eta,phi,e); and
SetPtEtaPhiM (pt,eta,phi,m);

Physics Vectors December 2001 - version 3.1d 307

Arithmetic and Comparison Operators

The TLorentzVector class provides operators to add, subtract or compare
four-vectors:

v3 = -vl;

vl = v2+v3;

vli+= v3;

vl = v2 + v3;

vli-= v3;

if (vl == v2) {...}
if(vl !'= v3) {...}

Magnitude/lnvariant mass, beta, gamma, scalar
product

The scalar product of two four-vectors is calculated with the (-,-,-,+

) metric:

s = vl*v2 = t1*t2-x1*x2-yl*y2-z1%z2
The magnitude squared mag2 of a four-vector is therefore:

mag2 v*v
If mag2 is negative mag

trt-x*x-y*y-z*z
-Sgrt (-mag*maqg) .

The methods are:

Double t s, s2;

s = vl.Dot(v2); // scalar product
s = vl*v2; // scalar product
s2 = v.Mag2(); or s2 = v.M2();

s = v.Mag(); s = v.M();

Since in case of momentum and energy the magnitude has the meaning of
invariant mass TLorentzVector provides the more meaningful aliases
M2 () and M() ;

The methods Beta () and Gamma () returns beta and gamma
1/Sqrt (1-beta*beta) .

Lorentz Boost

A boost in a general direction can be parameterized with three parameters

which can be taken as the components of a three vectorb = (bx,by,bz) .
With
x = (x,y,z) and gamma = 1/Sqrt (l-beta*beta), an arbitrary

active Lorentz boost transformation (from the rod frame to the original frame)
can be written as:

X x' + (gamma-1)/ (beta*beta) * (b*x")
t gamma (t'+ b*x).

* b + gamma * t'* b

308

December 2001 - version 3.1d Physics Vectors

The Boost () method performs a boost transformation from the rod frame to
the original frame. BoostVector () returns a Tvector3 of the spatial
components divided by the time component:

TVector3 b;

v.Boost (bx, by, bz) ;

v.Boost (b) ;

b = v.BoostVector () ; // b=(x/t,y/t,z/t)
Rotations
There are four sets of functions to rotate the Tvector3 component of a
TLorentzVector

Rotation around Axes

v.RotateX (TMath::Pi()/2.);
v.RotateY (.5);
v.RotateZ (.99);

Rotation around an Arbitrary Axis
v.Rotate (TMath::Pi() /4., vl1); // rotation around vl

Transformation from Rotated Frame

v.RotateUz (direction); // direction must be a unit TVector3

by TRotation (see TRotation)

TRotation r;
v.Transform(r) ; or v *=r; [/ v = r*v

Miscellaneous

Angle Between Two Vectors
Double t a = vl.Angle(v2); // get angle between vl and v2

Light-cone Components

Methods P1us () and Minus () return the positive and negative light-cone
components:

Double t pcone = v.Plus();
Double t mcone = v.Minus();

Physics Vectors December 2001 - version 3.1d 309

Transformation by TLorentzRotation

A general Lorentz transformation see class TLorentzRotation can be
used by the Transform () method, the *=, or * operator of the
TLorentzRotation class:

TLorentzRotation 1;
v.Transform(1l) ;
v = 1*v; or v *=1; [/ v = 1*v

TLorentzRotation

The TLorentzRotation class describes Lorentz transformations including
Lorentz boosts and rotations (see TRotation)

XX Xy Xz Xt

\ \
\ \
| yx vy vyz vyt |
lambda = | \
| zx zy zz zt |
\ \
| tx ty tz tt |
Declaration

By default it is initialized to the identity matrix, but it may also be initialized by
an other TLorentzRotation, by a pure TRotation or by a boost:

TLorentzRotation 1; // 1 is initialized as identity
TLorentzRotation m(1l); // m=1

TRotation r;

TLorentzRotation lr(r);

TLorentzRotation 1bl (bx,by,bz);

TVector3 b;

TLorentzRotation 1b2 (b);

The Matrix for a Lorentz boosts is:

l+gamma'*bx*bx gamma'*bx*by gamma ' *bx*bz gamma*bx |
gamma'*bx*bz l+gamma'*by*by gamma'*by*by gamma*by |
gamma ' *bz*bx gamma'*bz*by l+gamma'*bz*bz gamma*bz |

gamma *bx gamma*by gamma*bz gamma |

with the boost vector b= (bx, by, bz) and gamma=1/Sqrt (1-
beta*beta) and gamma'=(gamma-1) /beta*beta.

310 December 2001 - version 3.1d Physics Vectors

Access to the matrix Components/Comparisons

Access to the matrix components is possible with the methods xx () , XY ()

TT (), and with the operator (int,int):
Double t xx;
TLorentzRotation 1;
xx = 1.XX(); // gets the xx component
xx = 1(0,0); // gets the xx component
if (l==m) {...} // test for equality
if (1 !'=m) {...} // test for inequality
if (l.IsIdentity()) {...} // test for identity

Transformations of a Lorentz Rotation

Compound transformations

There are four possibilities to find the product of two TLorentzRotation

transformations:
TLorentzRotation a,b,c;
c = b*a; // product
c = a.MatrixMultiplication(b); // a is unchanged
a *= b; // a=a*b
c = a.Transform(b) // a=b*a then c=a

Lorentz boosts

Double t bx, by, bz;
TVector3 v (bx,by,bz);
TLorentzRotation 1;
1.Boost (v);

1.Boost (bx,by,bz);

Rotations

TVector3 axis;

1.RotateX (TMath::Pi()); // rotation around x-axis
1.Rotate (.5, axis); // rotation around specified
vector

Inverse transformation

The matrix for the inverse transformation of a TLorentzRotation is as
follows:

To return the inverse transformation keeping the current one unchanged, use
the method Inverse () . Invert () inverts the current

Physics Vectors December 2001 - version 3.1d 31

TLorentzRotation:

11 = 12.Inverse(); // 11 is inverse of 12, 12 unchanged
11 = 12.Invert(); // invert 12, then 11=12

Transformation of a TLorentzVector

To apply TLorentzRotation to TLorentzVector you can use either the
VectorMultiplication () method orthe * operator. You can also use
the Transform () function and the *= operator of the TLorentzvVector
class.

TLorentzVector v;
TLorentzVector 1;

v=1.VectorMultiplication (v);
v =1*v;

v.Transform(1l) ;

v *=1; [J/ v = 1*v

Physics Vector Example

To see an example of using physics vectors you can look at the test file. It is
in SROOTSYS/test/TestVectors.cxx. The vector classes are not loaded
by default, and to run it, you will need to load 1ibPhysics. so first:

root [] .L $ROOTSYS/1lib/libPhysics.so
root [] .x TestVectors.cxx

To load the physics vector library in a ROOT application use:

gSystem->Load ("1libPhysics") ;

The example SROOTSYS/test/TestVectors.cxx does not return much,
especially if all went well, but when you look at the code you will find
examples for many calls.

312 December 2001 - version 3.1d Physics Vectors

16 The Tutorials and Tests

This chapter is a guide to the examples that come with the installation of
ROOQT. They are located in two directories: SROOTSYS/tutorials and
SROOTSYS/test.

$ROOTSYS/tutorials

The tutorials directory contains many example scripts. For the examples to

)¢ De... I E3 | work you must have write permission and you will need to execute
Help on Demos | hsimple. C first. If you do not have write permission in the
A I $ROOTSYS/tutorials directory, copy the entire directory to your area.
ramework I The script hsimple. C displays a histogram as it is being filled, and creates a
ROOT file used by the other examples. To execute it type:
first I
hsimple | > cd $ROOTSYS/tutorials
> root
hsum I ER I i b 4
forrmulal I * *
* WELCOME to ROOT *
surfaces I " %
fillcandom | * Version = 2.25/02 21 August 2000 *
* *
fit1 I * You are welcome to visit our Web site *
multifit I : http://root.cern.ch :
b drany I Kk Sk kK ok kK sk kK sk kK sk kK sk kK sk kK sk ok ok k ok ok k ke ok ok ok ok ok ok ok ok ok ok ok ok
A I CINT/ROOT C/C++ Interpreter version 5.14.47, Aug 12 2000
LErrors I Type ? for help. Commands must be C++ statements.
Enclose multiple statements between { }.
tornado I
shapes I Welcome to the ROOT tutorials
geametry I
. Type ".x demos.C" to get a toolbar from which to execute
nad Iview I the demos
file |
Aldir I Type ".x demoshelp.C" to see the help window
tree I root [] .x hsimple.C
hsimple: Real Time =5.42 seconds Cpu Time = 3.92 seconds
hituplel I
rootmarks I

The Tutorials and Tests December 2001 - version 3.1d 313

Now execute demos . C, which brings up the button bar shown on the left.
You can click on any button to execute an other example. To see the source,
open the corresponding source file (for example fit1.c). Once you are
done, and want to quit the ROOT session, you can do so by typing .q.

root

root

[] .x demos.C

(1 .q

$ROOTSYS/test

The test directory contains a set of examples that represent all areas of the
framework. When a new release is cut, the examples in this directory are
compiled and run to test the new release's backward compatibility.

We see these source files:

- hsimple.cxx_ - Simple test program that creates and saves some
histograms

- MainEvent.cxx - Simple test program that creates a ROOT Tree
object and fills it with some simple structures but also with complete
histograms. This program uses the files Event.cxx, EventCint.cxx
and Event.h. An example of a procedure to link this program is in
bind Event. Note that the Makefile invokes the rootcint utility to
generate the CINT interface EventCint.cxx.

- Event.cxx -Implementation for classes Event and Track

- minexam.cxx - Simple test program to test data fitting.

- tcollex.cxx - Example usage of the ROOT collection classes.

- tcollbm.cxx - Benchmarks of ROOT collection classes

- tstring.cxx - Example usage of the ROOT string class.

- vmatrix.cxx - Verification program for the TMatrix class.

- vvector.cxx - Verification program for the Tvector class.

- vlazy.cxx - Verification program for lazy matrices. .

- hworld.cxx - Small program showing basic graphics. .

- guitest.cxx - Example usage of the ROOT GUI classes.

- Hello.cxx - Dancing text example

- Aclock.cxx -Analog clock (ala X11 xclock)

- Tetris.cxx - The famous Tetris game (using ROOT basic graphics) .

- stress.cxx_ - Important ROOT stress testing program.

The SROOTSYS/test directory is a gold mine of root-wisdom nuggets, and
we encourage you to explore and exploit it. These instructions will compile
all programs in SROOTSYS/test:

1. If you do not have write permission in the SROOTSYS/test directory,
copy the entire SROOTSYS/test directory to your area.

314

December 2001 - version 3.1d The Tutorials and Tests

2. The Makefile is a useful example of how ROOT applications are linked
and built. Edit the Makefile to specify your architecture by changing the
ARCH variable, for example, on an SGI machine type:

ARCH = sgikce

3. Now compile all programs:

% gmake

This will build several applications and shared libraries. We are especially
interested in Event, stress, and guitest.

Event — An Example of a ROOT Application .

Event is created by compiling MainEvent.cxx, and Event.cxx. It
creates a ROOT file with a tree and two histograms.

When running Event we have four optional arguments with defaults:

Argument Default
1 Number of Events (1 ... n) 400
2 Compression level: 1

0: no compression at all.

1: If the split level is set to zero, everything is
compressed according to the gzip level 1. If
split level is set to 1, leaves that are not
floating point numbers are compressed
using the gzip level 1.

2: If the split level is set to zero, everything is
compressed according to the gzip level 2. If
split level is set to 1, all non floating point
leaves are compressed according to the
gzip level 2 and the floating point leaves are
compressed according to the gzip level 1
(gzip level —1).

Floating point numbers are compressed differently
because the gain when compressing them is about
20 - 30%. For other data types it is generally better
and around 100%.

3 Split or not Split 1 (Split)
0: only one single branch is created and the
complete event is serialized in one single

buffer
1: a branch per variable is created.
4 Fill 1 (Write, no
0: read the file fill)

1: write the file, but don't fill the histograms
2: don't write, don't fill the histograms

10: fill the histograms, don't write the file
11: fill the histograms, write the file

20: read the file sequentially

25: read the file at random

Effect of Compression on File Size and Write Times

You may have noticed that a ROOT file has up to nine compression level, but
here only levels 0, 1, and 2 are described. Compression levels above 2 are

The Tutorials and Tests December 2001 - version 3.1d 315

not competitive. They take up to much write time compared to the gain in file

space.

Below are three runs of Event on a Pentium 11l 650 Mhz and the resulting file

size and write and read times.

No Compression:

> Event 400 0 1 1

400 events and 19153182 bytes processed.
RealTime=6.840000 seconds, CpuTime=3.560000 seconds
compression level=0, split=1l, argé4=1l

You write 2.800173 Mbytes/Realtime seconds

You write 5.380107 Mbytes/Cputime seconds

> 1s -1 Event.root
. 19752171 Feb 23 18:26 Event.root

> Event 400 0 1 20

400 events and 19153182 bytes processed.
RealTime=0.790000 seconds, CpuTime=0.790000 seconds
You read 24.244533 Mbytes/Realtime seconds

You read 24.244533 Mbytes/Cputime seconds

We see the file size without compression is 19.75 MB, the write time is 6.84

seconds and the read time is 0.79 seconds.

Compression = 1: event is compressed:

> Event 400 1 1 1

400 events and 19153182 bytes processed.
RealTime=6.440000 seconds, CpuTime=4.020000 seconds
compression level=1l, split=1l, argé=1l

You write 2.974096 Mbytes/Realtime seconds

You write 4.764473 Mbytes/Cputime seconds

> 1ls -1 Event.root
17728188 Feb 23 18:28 Event.root

> Event 400 1 1 20

400 events and 19153182 bytes processed.
RealTime=0.900000 seconds, CpuTime=0.900000 seconds
You read 21.281312 Mbytes/Realtime seconds

You read 21.281312 Mbytes/Cputime seconds

We see the file size 17.73, the write time was 6.44 seconds and the read
time was 0.9 seconds.

316

December 2001 - version 3.1d The Tutorials and Tests

Compression = 2: Floating point numbers are compressed with level 1:

> Event 400 2 1 1
400 events and 19153182 bytes processed.
RealTime=11.340000 seconds,
compression level=2,
You write 1.688993 Mbytes/Realtime seconds
You write 2.014004 Mbytes/Cputime seconds

> 1ls -1 Event.root
13783799 Feb 23 18:29 Event.root

> Event 400 2 1 20

CpuTime=9.510000 seconds
split=1, argd=1

400 events
RealTime=2.
You read 8.
You read 8.

and 19153182 bytes processed.

170000 seconds, CpuTime=2.170000 seconds
826351 Mbytes/Realtime seconds

826351 Mbytes/Cputime seconds

Bz ROOT DObject Browser

File ¥iew Options

The file size is 13.78 MB, the write time is 11.34 seconds and the read time is
2.17 seconds.

This table summarizes the findings on the impact of compressions:

Compression File Size Write Times Read Times
0 19.75 MB 6.84 sec. 0.79 sec.
1 17.73 MB 6.44 sec. 0.90 sec.
2 13.78 MB 11.34 sec. 2.17 sec.

Setting the Split Level

Split Level = 0:

=

All Folders

[Contents of "/F

|:| Classes

(2 Glokal Variables

(L Carwases

(L Geometries

L colors

(L Styles

(L Functions

[Metwork Connections
[Z Memory Mapped Files

[CIROOT Files
= {_JEvent root
- 530
KN [

[momelghifspanacekiroot2s,

= Devent

-

IL'

[1 Obiect.

| A example of a ROOT tree

Now we execute Event with the split parameter set to 0:

> Event 400 1 0 1

> root
root [] TFile f ("Event.root")
root [] TBrowser T

We notice that only one branch is visible (event). The
individual data members of the Event object are no longer
visible in the browser. They are contained in the event object
on the event branch, because we specified no splitting.

Split Level = 1:

Setting the split level to 1 will create a branch for each data
member in the Event object. We can see this by browsing
the resulting files.

First we execute Event and set the split level to 1 and start
the browser to examine the split tree:

root
root

> Event 400 1 1 1
> root

[]
[]

TFile f ("Event.root")
TBrowser browser

The Tutorials and Tests

December 2001 - version 3.1d 317

E ROODT Object Browser

File Wiew Options

19 [=] B

Help

[:l Metwork Connections
DMernnry Mapped Files
L:lMDmetghi.l’spanacekfrnntQE.fmc

All Folders | Contents of *../EventraotT/event"

(B Classes [Bits [Jrevtor Date 4]
(E2 Global Varizbles [JfEvtHr fEvthium [] fEvtHer.fRun
[__'lCanvasea [fFrag [m

(3 Geometries [(rmatrixpaniar [Measuresqiog

\,_—I Colors D fiseq D fhtrack

QSiVleé Dvaertex Dﬂemperature
[_JFunctions - D ype(20]

| Split Event - one branch for
each data member of “Event”

Split Track - one branch for
each data member of “Track”

L Cacvs W= RDOT Oisiect Browser
_--Elh_ﬁles File View Ophsgs Help
(CIROOT Files = = =
e I i fTracks g | W =
| &1l Folders Contdhts of " _/TreventTracks"
[:j Classes D fTracks fBits D fTracks fBx
([Glohal Varishles (] fvacks.fey [rrracks foharge
5 =
- —I [Canvases D fTracks filass2 D fTracks fMean Charge
[15 Db|ef‘13. ‘ gl Gedrmetries [frracks. fiupairt [rracks.Px
[__—ICO‘WS Dﬂ'racks.ny Dﬂracks.sz
9 Styles D fTracks fRandom D TTracks. flnigue| D
Functi
g N”e’:i'o'i:smmecﬁms [fvacks.fuslic [fracks fuertex(3]
(S Memary Mapped Fi [] fracks fifirst [frvacks. Filast
emory Mapped Files :
- fTracks. f¥first fTracks.flast
. [_jMGmefghilspana.cekIrootZS.n'oc D s D e T
ROQOT file L Eacvs [flracks f2first [frracks. f2last
-t files
[CAROOT Files
E} {:l Event.root
=HET
E} -CI event
-
D
[20 Oniects. |

stress - Test and Benchmark

The executable stress is created by compiling stress. cxx. It completes
sixteen tests covering the following capabilities of the ROOT framework.

CONOhWN =

Functions, Random Numbers, Histogram Fits
Size & compression factor of a ROOT file
Purge, Reuse of gaps in TFile
2D Histograms, Functions, 2D Fits
Graphics & PostScript
Subdirectories in a ROOT file
TNtuple, Selections, TCut, TCutG, TEventList
Split and Compression modes for Trees
Analyze Event . root file of stress 8

. Create 10 files starting from Event. root

. Test chains of Trees using the 10 files

. Compare histograms of test 9 and 11

. Merging files of a chain

. Check correct rebuilt of Event.root in test 13
. Divert Tree branches to separate files
. CINT test (3 nested loops) with LHCb trigger

The program stress takes one argument, the number of events to
process. The default is 1000 events. Be aware that executing stress with
1000 events_will create several files consuming about 100 MB of disk space;

318

December 2001 - version 3.1d The Tutorials and Tests

running stress with 30 events will consume about 20 MB. The disk space is
released once stress is done.

There are two ways to run stress:

From the system prompt or from the ROOT prompt using the interpreter.
Start ROOT with the batch mode option (-b) to suppress the graphic output.

> cd SROOTSYS/test
> stress // default 1000 events
> stress 30 // test with 30 events

> root -b
root [] .x stress.cxx // default 1000 events
root [] .x stress.cxx (30) // test with 30 events

The output of stress includes a pass/fail conclusion for each test, the total
number of bytes read and written, and the elapsed real and CPU time. It also
calculates a performance index for your machine relative to a reference
machine a DELL Inspiron 7500 (Pentium 11l 600 MHz) with 256 MB of
memory and 18 GBytes IDE disk in ROOTMARKS. Higher ROOTMARKS
means better performance. The reference machine has 200 ROOTMARKS,
so the sample run below with 53.7 ROOTMARKS is about four times slower
than the reference machine.

Here is a sample run:

s root -b

root [] .X stress.cxx (30)

Test 1 Functions, Random Numbers, Histogram Fits............. OK
Test 2 : Check size & compression factor of a Root file........ OK
Test 3 : Purge, Reuse of gaps in TFile..... ..ot ennnnns OK
Test 4 : Test of 2-d histograms, functions, 2-d fits........... OK
Test 5 : Test graphics & PostScriptc..iiiiiiiiiiiiinn... OK
Test 6 : Test subdirectories in a Root file.................... OK
Test 7 : TNtuple, selections, TCut, TCutG, TEventList.......... OK
Test 8 : Trees split and compression MOAES.......eveweeeennnnns OK
Test 9 : Analyze Event.root file of stress 8.......... OK
Test 10 : Create 10 files starting from Event.root.............. OK
Test 11 : Test chains of Trees using the 10 files............... OK
Test 12 : Compare histograms of test 9 and 1l............. ... OK
Test 13 : Test merging files of a chain....... OK
Test 14 : Check correct rebuilt of Event.root in test 13........ OK
Test 15 : Divert Tree branches to separate files................ OK
Test 16 : CINT test (3 nested loops) with LHCb trigger.......... OK
ER R Rk b h b b b Sk b I b I b h b b I b E E b S E E h b b b E b I I I b b I E b b b I I I I b I I I I i i
* IRIX64 fnpatl 6.5 01221553 IP27

Ak Ak A hkhhkhhhhhhkhAhhkhkhkhhhhhkhkhhrhk bk hhhkhkhkhkhkhkhkhkhkhkhkhhkhkhkhrhhkhkhkkhkkhkkhhkhhhhhkkhkkhkk*k
stress : Total I/0 = 75.3 Mbytes, I = 59.2, 0 = 16.1

stress : Compr I/O = 75.7 Mbytes, I = 60.0, O = 15.7

stress : Real Time = 307.61 seconds Cpu Time = 292.82 seconds

ER R R b b b b b b Sk I b I b I b b b b I b E E b S E E E b b b b I E e E I b b E b b b I I I I I I I i
* ROOTMARKS = 53.7 * Root2.25/00 20000710/1022

The Tutorials and Tests December 2001 - version 3.1d 319

guitest — A Graphical User Interface

The guitest example, created by compiling guitest.cxx, tests and
illustrates the use of the native GUI widgets such as cascading menus, dialog
boxes, sliders and tab panels. It is a very useful example to study when
designing a GUI. Below are some examples of the output of guitest, to run
it type guitest at the system prompt in the SROOTSYS/test directory.

We have included an entire chapter on this subject where we explore
guitest in detail and use it to explain how to build our own ROOT
application with a GUI (see Chapter Writing a Graphical User Interface).

\\‘ WinTest (&l 3
File Help
Test different features... [[0 DOn DO 4]

D Sl Test = Dialog...
- 2 r . Message Box... . - .
| ‘ Sliders...
T e Cascaded menus ID = 51 .
:f :;m ID =52
. ID =53

ID 41
»¢ Dialog | X} ID = 42
Tab1|Tab2 Tab3 |Tab4|Tan 5| D 45
Start Eilling Hists| Stop Filling Hists| e
ST 1 e
¢ Message Box Test [x] w
~Buttons —lcons m—————
here I_ ™ ves & Stop -
L ™ No C Question Close
[——— |V OK € Exclamation Q |
™ Apply € Asterisk
™ Retry
I Ignore
™ cancel
™ Close
™ Dismiss
Title: [MsgBox
Message: IThis is a test message hox.

320 December 2001 - version 3.1d The Tutorials and Tests

17 Example Analysis

This chapter is an example of a typical physics analysis. Large data files are
chained together and analyzed using the TSelector class.

Explanation

This script uses four large data sets from the H1 collaboration at DESY
Hamburg. One can access these data sets (277 Mbytes) from the ROOT web
site at: ftp://root.cern.ch/root/h1analysis/

The physics plots generated by this example cannot be produced using
smaller data sets.

There are several ways to analyze data stored in a ROOT Tree

e Using TTree: :Draw:
This is very convenient and efficient for small tasks. A TTree: : Draw
call produces one histogram at the time. The histogram is automatically
generated. The selection expression may be specified in the command
line.

e Usingthe TTreevViewer:
This is a graphical interface to TTree: : Draw with the same
functionality.

e Using the code generated by TTree: :MakeClass:
In this case, the user creates an instance of the analysis class. He has
the control over the event loop and he can generate an unlimited
number of histograms.

e Using the code generated by TTree: :MakeSelector:
Like for the code generated by TTree: :MakeClass, the user can do
complex analysis. However, he cannot control the event loop. The event
loop is controlled by TTree: : Process called by the user. This solution
is illustrated by the code below. The advantage of this method is that it
can be run in a parallel environment using PROOF (the Parallel Root
Facility).

A chain of four files (originally converted from PAW ntuples) is used to
illustrate the various ways to loop on ROOT data sets. Each contains a
ROOT Tree named "h42". The class definition in hlanalysis.h has been
generated automatically by the ROOT utility TTree: :MakeSelector using
one of the files with the following statement:

Example Analysis December 2001 - version 3.1d 321

h42->MakeSelector ("hlanalysis") ;

This produces two files: hlanalysis.h and hlanalysis.C. A skeleton of
hlanalysis.C file is made for you to customize. The hlanalysis class is
derived from the ROOT class TSelector. The following members functions
of hlanalyhsis (i.e. TSelector) are called by the TTree: : Process
method.

e Begin: This function is called every time a loop over the tree starts. This
is a convenient place to create your histograms.

e Notify (): This function is called at the first entry of a new tree in a
chain.

e ProcessCut: This function is called at the beginning of each entry to
return a flag true if the entry must be analyzed.

e ProcessFill: This function is called in the entry loop for all entries
accepted by Select.

e Terminate: This function is called at the end of a loop on a TTree.
This is a convenient place to draw and fit your histograms.

To use this program, try the following session.

First, turn the timer on to show the real and CPU time per command.

root[] gROOT->Time () ;

Step A: create a TChain with the four H1 data files. The chain can be
created by executed this short script h1chain.C below. $H1 is a system
symbol pointing to the H1 data directory.

TChain chain ("h42");

chain.Add ("S$H1/dstarmb.root");
//21330730 bytes, 21920 events

chain.Add ("$H1/dstarpla.root");
//71464503 bytes, 73243 events

chain.Add ("$H1/dstarplb.root") ;
//83827959 bytes, 85597 events

chain.Add ("$H1/dstarp2.root");
//100675234 bytes, 103053 events

Run the above script from the command line:

root[] .x hlchain.C

Step B: Now we have a directory containing the four data files. Since a
TChain is a descendent of TTree we can call TChain: : Process to loop
on all events in the chain. The parameter to the TChain: : Process method
is the name of the file containing the created TSelector class
(hlanalysis.C).

root[] chain.Process("hlanalysis.C")

Step C: Same as step A, but in addition fill the event list with selected entries.
The event list is saved to a file "e1ist.root" by the

322 December 2001 - version 3.1d Example Analysis

TSelector::Terminate method. To see the list of selected events, you
candoelist->Print ("all"). The selection function has selected 7525
events out of the 283813 events in the chain of files. (2.65 per cent)

root[] chain.Process("hlanalysis.C","fillList")

Step D: Process only entries in the event list. The event list is read from the
filein elist.root generated by step C.

root[] chain.Process("hlanalysis.C", "useList")

Step E: The above steps have been executed with the interpreter. You can
repeat the steps 2, 3, and 4 using ACLIC by replacing "hlanalysis.C" by
"hlanalysis.C+"or"hlanalysis.C++".

Step F: If you want to see the differences between the interpreter speed and
ACLIC speed start a new session, create the chain as in step 1, then execute

root[] chain.Process("hlanalysis.C+","useList")

The commands executed with the four different methods B, C, D and E
produce two canvases shown below:

dm d Mean = 0.1551
\ Fitted value of par[1]=p1 | Mean = 0.4266 | |%
RMS = 0.997
220f |
200 | J‘*
180; I
160 +
140; |
120F -}
100F + t
80;
60F
s0 4t o
20F = s
o;*\:\‘j-ﬁjrﬂ:rjwwww\\\\\\\\H"’*«I—rﬂ» T .
-3 -2 -1 0 1 2 3 5 6
[ps]

Example Analysis December 2001 - version 3.1d 323

Script

This is the hlanalsysis.C file that was generated by
TTree: :MakeSelector and then modified to perform the analysis.

#include "hlanalysis.h"
#include "TH2.h"
#include "TF1.h"
#include "TStyle.h"
#include "TCanvas.h"
#include "TLine.h"
#include "TEventList.h"

const Double t dxbin = (0.17-0.13)/40; // Bin-width
const Double t sigma = 0.0012;

TEventList *elist = 0;

Bool t uselist, fillList;

TH1F *hdmd;

TH2F *h2;

//

Double_t fdm5 (Double_t *xx, Double t *par)
{
Double t x = xx[0];
if (x <= 0.13957) return 0;
Double t xp3 = (x-par[3])*(x-par[3]);
Double t res =
dxbin* (par[0] *TMath: :Power (x-0.13957, par[l])
+ par[2] / 2.5066 / par[4]*TMath: :Exp (
xp3/2/par[4]/par(4]));
return res;

}
/7

Double_t fdm2 (Double t *xx, Double_t *par)
{
Double t x = xx[0];
if (x <= 0.13957) return 0;
Double t xp3 = (x-0.1454)*(x-0.1454);
Double t res = dxbin* (par[0]*TMath::Power (x-0.13957, 0.25)
+ par[l] / 2.5066/sigma*TMath: :Exp (
xp3/2/sigma/sigma)) ;
return res;

}
//

void hlanalysis::Begin (TTree *tree)

{

// function called before starting the event loop
// -it performs some cleanup

// -it creates histograms

// -it sets some initialization for the event list

//initialize the Tree branch addresses
Init (tree);

//print the option specified in the Process function.
TString option = GetOption();
printf ("Starting hlanalysis with process option:

324

December 2001 - version 3.1d Example Analysis

Q

%sn",option.Data());

//Some cleanup in case this function had
//already been executed.

//Delete any previously generated histograms or
//functions

gDirectory->Delete ("hdmd") ;

gDirectory->Delete ("h2*");

delete gROOT->GetFunction ("£5");

delete gROOT->GetFunction ("f2");

//create histograms
hdmd = new THIF ("hdmd","dm d",40,0.13,0.17);
h2 = new TH2F
("h2","ptd0 vs dm d",30,0.135,0.165,30,-3,6);

//process cases with event list

fillList = kFALSE;

uselList = kFALSE;

fChain->SetEventList (0) ;

delete gDirectory->GetList () ->FindObject ("elist");

// case when one creates/fills the event list
if (option.Contains("fillList")) {
fillList = kTRUE;
elist = new TEventList
("elist","selection from Cut",5000);

// case when one uses the event list generated
// in a previous call

if (option.Contains ("useList")) {
useList = kTRUE;
TFile f("elist.root");
elist = (TEventList*)f.Get("elist");

if (elist) elist->SetDirectory(0Q);
//otherwise the file destructor will delete elist
fChain->SetEventList (elist) ;

}

//
Bool_t hlanalysis::ProcessCut(Int_t entry)

{
// Selection function to select D* and DO.

//in case one event list is given in input,
//the selection has already been done.
if (uselist) return kTRUE;

// Read only the necessary branches to select entries.
// return as soon as a bad entry is detected

b md0_ d->GetEntry(entry);

if (TMath::Abs(md0 _d-1.8646) >= 0.04) return kFALSE;
b ptds _d->GetEntry(entry);

if (ptds_d <= 2.5) return kFALSE;

b etads d->GetEntry(entry);

if (TMath::Abs(etads_d) >= 1.5) return kFALSE;

b ik->GetEntry(entry); ik--;

//original ik used f77 convention starting at 1

b ipi->GetEntry(entry); ipi--;

Example Analysis December 2001 - version 3.1d 325

b ntracks->GetEntry(entry);

b nhitrp->GetEntry(entry);

if (nhitrp[ik]*nhitrp[ipi] <= 1) return kFALSE;
b rend->GetEntry (entry);

b rstart->GetEntry(entry);

if (rend[ik] -rstart[ik] <= 22) return kFALSE;
if (rend[ipi]l-rstart[ipi] <= 22) return kFALSE;
b nlhk->GetEntry(entry);

if (nlhk[ik] <= 0.1) return kFALSE;

b nlhpi->GetEntry (entry);

if (nlhpif[ipi] <= 0.1) return kFALSE;

b ipis->GetEntry(entry);

ipis--;

if (nlhpif[ipis] <= 0.1) return kFALSE;

b njets->GetEntry (entry);

if (njets < 1) return kFALSE;

// if option fillList, fill the event list
if (filllist) elist->Enter

(fChain->GetChainEntryNumber (entry)) ;
return kTRUE;

//

void hlanalysis::ProcessFill (Int_t entry)

{

// Function called for selected entries only
// read branches not processed in ProcessCut

b dm d->GetEntry(entry);
//read branch holding dm d
b rpd0_ t->GetEntry (entry) ;
//read branch holding rpd0_t
b ptd0_d->GetEntry(entry);
//read branch holding ptd0_d

//fill some histograms

hdmd->Fill (dm_d);

h2->Fill (dm d,rpd0 t/0.029979*1.8646/ptd0 d);
}

//

void hlanalysis::Terminate ()

{
// Function called at the end of the event loop

//create the canvas for the hlanalysis fit

gStyle->SetOptFit () ;
TCanvas *cl = new TCanvas

("cl","hlanalysis analysis™,10,10,800,600);
cl->SetBottomMargin (0.15) ;
hdmd->GetXaxis () ->SetTitle

("m_ {K#pi#pi} - m {K#pi}[GeV/c"{2}]1");
hdmd->GetXaxis () ->SetTitleOffset (1.4);

//fit histogram hdmd with function f5 using

326 December 2001 - version 3.1d Example Analysis

//the loglikelihood option

TF1 *f5 = new TF1("£5",fdm5,0.139,0.17,5);
f5->SetParameters (1000000, .25, 2000, .1454, .001);
hdmd->Fit ("£5","1r");

//create the canvas for tau d0

gStyle->SetOptFit (0) ;

gStyle->SetOptStat (1100) ;

TCanvas *c2 = new TCanvas("c2","taubO0",100,100,800,600);
c2->SetGrid () ;

c2->SetBottomMargin (0.15) ;

// Project slices of 2-d histogram h2 along X ,

// then fit each slice with function f2 and make a
// histogram for each fit parameter.

// Note that the generated histograms are added

// to the list of objects in the current directory.

TF1l *f2 = new TF1("f2",fdm2,0.139,0.17,2);
f2->SetParameters (10000, 10);
h2->FitSlicesX(f2,0,0,1,"gln");

TH1D *h2 1 = (TH1D*)gDirectory->Get("h2 1");
h2 1->GetXaxis ()->SetTitle ("#taulps]");

h2 1->SetMarkerStyle(21);

h2 1->Draw();
c2->Update () ;
TLine *line =
line->Draw() ;

new TLine (0,0,0,c2->GetUymax()) ;

// save the event list to a Root file if one was
// produced
if (£fillList) {
TFile efile("elist.root","recreate");
elist->Write () ;

Example Analysis December 2001 - version 3.1d 327

18

Networking

In this chapter, you will learn how to send data over the network using the ROOT socket
classes.

Setting up a Connection

On the server side, we create a TServerSocket to wait for a connection
request over the network. If the request is accepted, it returns a full-duplex
socket. Once the connection is accepted, we can communicate to the client
that we are ready to go by sending the string "go", and we can close the
server socket.

// server

TServerSocket *ss = new TServerSocket (9090, kTRUE):;
TSocket *socket = ss->Accept();

socket->Send ("go") ;

ss—=>Close() ;

On the client side, we create a socket and ask the socket to receive input.

// client

TSocket *socket = new TSocket ("localhost", 9090);
Char str[32];

Socket->Recv (str,32);

Networking

December 2001 - version 3.1d 329

Sending Objects over the Network

We have just established a connection and you just saw how to send and
receive a string with the example "go". Now let's send a histogram.

To send an object (in our case on the client side) it has to derive from
TObject because it uses the Streamers to fill a buffer that is then sent
over the connection. On the receiving side, the Streamers are used to read
the object from the message sent via the socket. For network
communication, we have a specialized TBuf fer, a descendant of TBuffer
called TMessage. In the following example, we create a TMessage with the
intention to store an object, hence the constant kMESS OBJECT in the
constructor. We create and fill the histogram and write it into the message.
Then we call TSocket: : Send to send the message with the histogram.

// create an object to be sent

TH1F *hpx = new TH1F ("hpx","px distribution",100,-4,4);
hpx->FillRandom("gaus",1000) ;

// create a TMessage to send the object

TMessage message (KMESS OBJECT) ;

// write the histogram into the message buffer
message.WriteObject (hpx) ;

// send the message

socket->Send (message) ;

On the receiving end (in our case the server side), we write a while loop to
wait and receive a message with a histogram. Once we have a message, we
call TMessage: :ReadObject, which returns a pointer to TObject. We
have to cast it to a TH1 pointer, and now we have a histogram. At the end of
the loop, the message is deleted, and another one is created at the
beginning.

while (1) {
TMessage *message;
socket->Recv (message) ;
TH1 *h = (TH1*)message->ReadObject (message->GetClass()):;
delete message;

330 December 2001 - version 3.1d Networking

Closing the Connection

Once we are done sending objects, we close the connection by closing the
sockets at both ends.

Socket->Close () ;

This diagram summarizes the steps we just covered:

Server

{
TServerSocket *ss =
new TServerSocket (9090,

TSocket *socket = ss->Accept();

kTRUE) ;

Client

TSocket *socket =

connect

new TSocket ("localhost™, 9090);

socket->Send ("go") ;

OK

ss->Close () ;

while (1) {
TMessage *message;

Char str([32];
Socket->Recv (str,32);

TH1F *hpx = new THIF ("hpx","px",100,-4,4);
hpx->FillRandom ("gaus",1000) ;

// create a TMessage to send an object
TMessage message (kKMESS OBJECT) ;

// write the histogram into the message
message.WriteObject (hpx) ;

// send the message

socket->Recv (message) ;

send

‘ socket->Send (message)

TH1 *h =
(TH1*)mess->ReadObject
(mess->GetClass ());

delete mess;

}

socket->Close () ;

}

socket->Close () ;

}

Networking

December 2001 - version 3.1d

331

A Server with Multiple Sockets

Chances are that your server has to be able to receive data from multiple
clients. The class we need for this is TMonitor. It lets you add sockets and
the TMonitor: : Select method returns the socket with data waiting.
Sockets can be added, removed, or enabled and disabled.

Here is an example of a server that has a TMonitor to manage multiple
sockets:

TServerSocket *ss = new TServerSocket (9090, kTRUE) ;

// Accept a connection and return a full-duplex
// communication socket.

TSocket *s0 = ss->Accept();

TSocket *sl = ss->Accept();

// tell the clients to start
sO0->Send ("go 0");
sl->Send("go 1");

// Close the server socket (unless we will use it
// later to wait for another connection).
ss->Close();

TMonitor *mon = new TMonitor;

mon->Add (s0) ;
mon->Add (sl) ;

while (1) {
TMessage *mess;
TSocket *s;
s = mon->Select ()
s—>Recv (mess) ;

The full code for the example above is in
SROOTSYS/tutorials/hserver.cxx and
SROOTSYS/tutorials/hclient.cxx.

332 December 2001 - version 3.1d Networking

19 Writing a Graphical
User Interface

The ROOT GUI classes support an extensive and rich set of widgets. The
widgets classes depend only on the X11 and Xpm libraries, eliminating the
need for any other GUI engine such as Motif or QT, and they have the
Windows look and feel. They are based on Hector Peraza's Xclass'95 widget
library.

Although powerful and quite feature rich, we are missing extensive
documentation. This will come eventually but for the time being you will have
to "program by example". We start with a short tutorial followed by few non-
trivial examples that will show how to use the different widget classes.

The New ROOT GUI Classes

Features of the new GUI classes in a nutshell:

e Originally based on Xclass'95 widget library (under a Lesser GNU Public
License)

o Arrich and complete set of widgets

o Uses only X11 and Xpm (no Motif, Xaw, Xt, etc.)

o Small (12000 lines of C++)

o Win'95 look and feel
All X11 calls abstracted using in the "abstract” ROOT TGXW class
Rewritten to use internally the ROOT container classes
Completely scriptable via the C++ interpreter (fast prototyping)
Full class documentation is generated automatically (as for all ROOT
classes)

XClass'95

Here are some highlights of the XClass'95. Hector Peraza is the original
author of the XClass'95 class library.

The Xclass'95 comes with a complete set of widgets. These include:

Simple widgets, as labels and icons
Push buttons, either with text or pix maps
Check buttons

Radio buttons

Menu bars and popup menus

Writing a Graphical User Interface December 2001 - version 3.1d 333

Scroll bars

Scrollable canvas

List boxes

Combo boxes

Group frames

Text entry widgets

Tab widgets

General-purpose composite widgets, for building toolbars and status
bars

e Dialog classes and top-level window classes

The widgets are shown in frames:
frame, composite frame, main frame, transient frame, group frame
And arranged by layout managers:

horizontal layout, vertical layout, row layout, list layout, tile layout, matrix
layout, ...

Using a combination of layout hints:

left, center x, right, top, center y, bottom, expand x, expand y and fixed
offsets

Event handling by messaging (as opposed to callbacks): in response to
actions widgets send messages (SendMessage ()) to associated frames
(ProcessMessage ())

ROOT Integration

Replace all calls to X11 by calls to the ROOT abstract graphics base class
TGXW. Currently, implementations of TGxw exist X11 (TGX11) and Win32
(TGWin32). Thanks to this single graphics interface, porting ROOT to a new
platform (BeOS, Rhapsody, etc.) requires only the implementation of TGxXw
(and TSystem).

Abstract Graphics Base Class TGXW

TGX11 TGWin32 TGClient | Unix/Windows
h b =277
\ \ = _-
\ ==\ e
\\ - \\
Unix Windows

334

December 2001 - version 3.1d Writing a Graphical User Interface

Concrete implementations of TGXW are TGx11, for X Windows, TGWin32 for
Win95/NT. The TGXClient implementation provides a network interface
allowing for remote display via the rootdisp servers.

NOTE: the ROOT GUI classes are for the time being only supported on
Unix/X11 systems. Work on a Win32 port is in progress and coming shortly

Further changes:

e Changed internals to use ROOT container classes, notably hash tables
for fast lookup of frame and picture objects

e Added TObject inheritance to the few base classes to get access to the
extended ROOT RTTI (type information and object inspection) and
documentation system

e Conversion to the ROOT naming conventions to provide a
homogeneous and consistent environment for the user

Writing a Graphical User Interface December 2001 - version 3.1d 335

A Simple Example

The code that uses the GUI classes is written in bold font.

#include <TROOT.h>

#include <TApplication.h>

#include <TGClient.h>

extern void InitGui () ;

VoidFuncPtr t initfuncs[] = { InitGui, 0 };

TROOT root ("GUI", "GUI test environement", initfuncs):;

int main(int argc, char **argv)

{
TApplication theApp ("App", &argc, argv);
MyMainFrame mainWin (gClient->GetRoot (), 200, 220);
theApp.Run () ;
return 0;

MyMainFrame

#include <TGClient.h>

#include <TGButton.h>

class MyMainFrame : public TGMainFrame ({

private:
TGTextButton *fButtonl, *fButton2;
TGPictureButton *fPicBut;
TGCheckButton *fChkBut;
TGRadioButton *fRButl, *fRBut2;
TGLayoutHints *fLayout;

public:
MyMainFrame (const TGWindow *p, UInt t w, UInt t h);
~MyMainFrame () ;
Bool t ProcessMessage (Long t msg, Long t parml, Long t
parm2) ;

}i

336 December 2001 - version 3.1d Writing a Graphical User Interface

Laying out the Frame

{

MyMainFrame: :MyMainFrame (const TGWindow *p, UInt_t w,
UInt_t h): TGMainFrame(p, w, h)

// Create a main frame with a number of different buttons.

fButtonl = new TGTextButton (this, "&Version", 1);
fButtonl->SetCommand ("printf

(\"This is ROOT version %s\\n\",
gROOT->GetVersion());");

fButton2 = new TGTextButton (this, "&Exit", 2);
fButton2->SetCommand (".gq");

fPicBut = new TGPictureButton (
this, gClient->GetPicture ("world.xpm"), 3);

fPicBut->SetCommand ("printf (\"hello world!\\n\");");
fChkBut = new TGCheckButton (this, "Check Button",)
fRButl = new TGRadioButton(this, "Radio Button 1", 5);
fRBut2 = new TGRadioButton(this, "Radio Button 2", 6);
fLayout = new TGLayoutHints

(kLHintsCenterX | kLHintsCenterY):;

AddFrame (fButtonl, fLayout);

AddFrame (fPicBut, fLayout);
AddFrame (fButton2, fLayout);
AddFrame (fChkBut, fLayout):;
AddFrame (fRButl, fLayout):;
AddFrame (fRBut2, fLayout):;
MapSubwindows () ;

Layout () ;

SetWindowName ("Button Example");
SetIconName ("Button Example");

MapWindow () ;

Writing a Graphical User Interface December 2001 - version 3.1d

337

Adding Actions

Bool_t MyMainFrame: :ProcessMessage (Long_t msg, Long t
parml, Long_t)
{
// Process events generated by the buttons in the frame.
switch (GET MSG (msg)) {
case kC COMMAND:
switch (GET_ SUBMSG (msg)) {
case kCM BUTTON:
printf ("text button id %$1d pressed\n", parml);
break;
case kCM CHECKBUTTON:
printf ("check button id %1d pressed\n", parml);
break;
case kCM RADIOBUTTON:
if (parml == 5)
fRBut2->SetState (kButtonUp) ;
if (parml == 6)
fRButl->SetState (kButtonUp) ;
printf ("radio button id %$1d pressed\n", parml);
break;
default:
break;
}
default:
break;
}
return kTRUE;

The Result

The Widgets in Detail

In this section we look at an example of using the widgets. The complete

source code is in SROOTSYS/test/guitest.C. Build the test directory with
the appropriate makefile, and you will be able to run guitest. Here we present
snippets of the code and the graphical output.

338

December 2001 - version 3.1d Writing a Graphical User Interface

First the main program, which reveals that the functionality is in
TestMainFrame.

TROOT root ("GUI", "GUI test environement");

int main(int argc, char **argv)
{
TApplication theApp ("App", &argc, argv);
if (gROOT->IsBatch()) {
fprintf (stderr,
"$s: cannot run in batch mode\n", argv[0]);
return 1;
}
TestMainFrame mainWindow (gClient->GetRoot (), 400, 220);
theApp.Run () ;
return 0;

TestMainFrame has two subframes (TGCompositFrame), a canvas, a text
entry field, a button, a menu bar, several popup menus, and layout hints. It
has a public constructor, destructor and a ProcessMessage method to carry
out the actions.

class TestMainFrame : public TGMainFrame {

private:
TGCompositeFrame *fStatusFrame;
TGCanvas *fCanvasWindow;
TGCompositeFrame *fContainer;
TGTextEntry *fTestText;
TGButton *fTestButton;
TGMenuBar *fMenuBar;
TGPopupMenu *fMenuFile, *fMenuTest, *fMenuHelp;
TGPopupMenu *fCascadeMenu,
*fCascadelMenu, *fCascade2Menu;
TGLayoutHints *fMenuBarLayout, *fMenuBarItemLayout,
*fMenuBarHelpLayout;
public:

TestMainFrame (const TGWindow *p, UInt t w, UInt t h);
virtual ~TestMainFrame () ;

virtual void CloseWindow () ;

virtual Bool t ProcessMessage(Long t msg, Long t parml,
Long_t);
}i

Example: Widgets and the Interpreter

The script SROOTSYS/tutorials/dialogs.C shows how the widgets can
be used from the interpreter.

Writing a Graphical User Interface December 2001 - version 3.1d 339

RQuant Example

This is an example of extensive use of the ROOT GUI classes. | include only
a picture here, for the curious the full documentation or RQuant can be found
at: http://svedagq.tsl.uu.se/~anton/rquant.htm
http://svedaq.tsl.uu.se/~anton/rquant _technical_analysis_slide.htmhttp://svedag.tsl.uu
.se/~anton/rquant_technical analysis_slide.htm

http://svedaq.tsl.uu.se/~anton/rquant_technical analysis_slide.htm

References

http://home.cern.ch/~chytrace/xclasstut.htmi
A basic introduction and mini tutorial on the Xclass by Hector Peraza's

ac.be/htmli-test/xclass.html
The original Xclass'95 widget library documentation and source by Hector
Peraza's.

http://svedaq.tsl.uu.se/~anton/rguant.htm
An Example of an elaborate ROOT GUI application.

340 December 2001 - version 3.1d Writing a Graphical User Interface

20 Automatic HTML
Documentation

The class descriptions on the ROOT website have been generated
automatically by ROOT itself with the THtm1 class. With it, you can
automatically generate (and update) a reference guide for your ROOT
classes. Please read the THtm1 class description and the paragraph on
Coding Conventions.

The following illustrates how to generate an html class description using the
MakeClass method. In this example class name is TBRIK.

root[] THtml html; // instanciate a THtml object
root[] html->MakeClass ("TBRIK")

How to generate html code for all classes, including an index.

root[] html->MakeAll() ;

This example shows how to convert a script to html, including the generation
of a "gif" file produced by the script. First execute the script.

root[] .x htmlex.C

Invoke the TSystem class to execute a shell script. Here we call the "xpick"
program to capture the graphics window into a gi £ file.

root[] gSystem->Exec("xpick html/gif/shapes.gif")

Convert this script into html.

root[] html->Convert("htmlex.C","Auto HTML document generation")

For more details see the documentation of the class THtm1.

Automatic HTML Documentation December 2001 - version 3.1d 341

21 PROOF: Parallel
Processing

Building on the experience gained from the implementation and operation of
the PIAF system we have developed the parallel ROOT facility, PROOF. The
main problems with PIAF were because its proper parallel operation
depended on a cluster of homogenous equally performing and equally loaded
machines. Due to PIAF's simplistic portioning of a job in N equal parts, where
N is the number of processors, the overall performance was governed by the
slowest node. The running of a PIAF cluster was an expensive operation
since it required a cluster dedicated solely to PIAF. The cluster could not be
used for other types of jobs without destroying the PIAF performance.

In the implementation of PROOF, we made the slave servers the active
components that ask the master server for new work whenever they are
ready. In the scheme the parallel processing performance is a function of the
duration of each small job, packet, and the networking bandwidth and
latency. Since the bandwidth and latency of a networked cluster are fixed the
main tunable parameter in this scheme is the packet size. If the packet size is
too small the parallelism will be destroyed by the communication overhead
caused by the many packets sent over the network between the master and
the slave servers. If the packet size is too large, the effect of the difference in
performance of each node is not evened out sufficiently.

Another very important factor is the location of the data. In most cases, we
want to analyze a large number of data files, which are distributed over the
different nodes of the cluster. To group these files together we use a chain. A
chain provides a single logical view of the many physical files. To optimize
performance by preventing huge amounts of data being transferred over the
network via NFS or any other means when analyzing a chain, we make sure
that each slave server is assigned a packet, which is local to the node. Only
when a slave has processed all its local data will it get packets assigned that
cause remote access. A packet is a simple data structure of two numbers:
begin event and number of events. The master server generates a packet
when asked for by a slave server, taking into account t the time it took to
process the previous packet and which files in the chain are local to the lave
server. The master keeps a list of all generated packets per slave, so in case
a slave dies during processing, all its packets can be reprocessed by the left
over slaves.

PROOF: Parallel Processing December 2001 - version 3.1d 343

22

Threads

A thread is an independent flow of control that operates within the same
address space as other independent flows of controls within a process. In
most UNIX systems, thread and process characteristics are grouped into a
single entity called a process. Sometimes, threads are called "lightweight
processes".

Note: This introduction is adapted from the AIX 4.3 Programmer's Manual.

Threads and Processes

In traditional single-threaded process systems, a process has a set of
properties. In multi-threaded systems, these properties are divided between
processes and threads.

Process Properties

A process in a multi-threaded system is the changeable entity. It must be
considered as an execution frame. It has all traditional process attributes,
such as:

e Process ID, process group ID, user ID, and group ID
e Environment
o Working directory

A process also provides a common address space and common system
resources:

File descriptors

Signal actions

Shared libraries

Inter-process communication tools (such as message queues, pipes,
semaphores, or shared memory)

Threads

December 2001 - version 3.1d 345

Thread Properties

A thread is the schedulable entity. It has only those properties that are
required to ensure its independent flow of control. These include the following

properties:

e Stack

e Scheduling properties (such as policy or priority)
e Set of pending and blocked signals

e Some thread-specific data (TSD)

An example of thread-specific data is the error indicator, errno. In multi-
threaded systems, errno is no longer a global variable, but usually a
subroutine returning a thread-specific errno value. Some other systems may
provide other implementations of errno.

With respect to ROOT, a thread specific data is for example the gpad
pointer, which is treated in a different way, whether it is accessed from any
thread or the main thread.

Threads within a process must not be considered as a group of processes
(even though in Linux each thread receives an own process id, so that it can
be scheduled by the kernel scheduler). All threads share the same address
space. This means that two pointers having the same value in two threads
refer to the same data. Also, if any thread changes one of the shared system
resources, all threads within the process are affected. For example, if a
thread closes a file, the file is closed for all threads.

The Initial Thread

When a process is created, one thread is automatically created. This thread
is called the initial thread or the main thread. The initial thread executes the
main routine in multi-threaded programs.

Note: At the end of this chapter is a glossary of thread specific terms

Implementation of Threads in ROOT

The TThread class has been developed to provide a platform independent
interface to threads for ROOT.

Installation

For the time being, it is still necessary to compile a threaded version of
ROOT to enable some very special treatments of the canvas operations. We
hope that this will become the default later.

To compile ROOT, just do (for example on a debian Linux):

./configure linuxdeb2 --with-thread=/usr/lib/libpthread.so
gmake depend
gmake

346 December 2001 - version 3.1d Threads

This configures and builds ROOT using /usr/l1ib/libpthread.so as the
Pthread library, and defines R__ THREAD. This enables the thread specific
treatment of gPad, and creates SROOTSYS/1ib/1ibThread. so.

Note: The parameter 1 inuxdeb2 has to be replaced with the appropriate
ROOT keyword for your platform.

Classes

TThread

This class implements threads. The platform dependent implementation is in
the TThreadImp class and its descendant classes (e.g. TPosixThread).

TMutex

This class implements mutex locks. A mutex is a mutually exclusive lock.
The platform dependent implementation is in the TMutexImp class and its
descendant classes (e.g. TPosixMutex)

TCondition

This class implements a condition variable. Use a condition variable to signal
threads. The platform dependent implementation is in the TConditionImp
class and its descendant classes (e.g. TPosixCondition).

TSemaphore

This class implements a counting semaphore. Use a semaphore to
synchronize threads. The platform dependent implementation is in the
TMutexImp and TConditionImp classes.

TThread for Pedestrians

To run a thread in ROOT, follow these steps:

Initialization:

Add these lines to your rootlogon.C:

// The next line may be unnecessary on some platforms
gSystem->Load ("/usr/1lib/libpthread.so");
gSystem->Load ("$SROOTSYS/1lib/libThread.so") ;

This loads the library with the TThread class and the pthread specific
implementation file for Posix threads.

Coding:

Define a function (e.g. void* UserFun (void* UserArgs)) that should
run as a thread. The code for the examples is at the web site of the authors
(Jorn Adamczewski, Marc Hemberger). After downloading the code from this
site, you can follow the example below.

www-linux.gsi.de/~go4/HOWTOthreads/howtothreadsbody.html#tth sEc8

Threads

December 2001 - version 3.1d 347

Loading:
Start an interactive ROOT session
Load the shared library:

root

[] gSystem->Load("mhs3.s0");

Or

root

[] gSystem->Load("CalcPiThread.so") ;

Creating:

Create a thread instance (see also example RunMhs3.C or RunPi.C) with:

root

[] TThread *th = new TThread (UserFun,UserArgs) ;

When called from the interpreter, this gives the name “UserFun” to the
thread. This name can be used to retrieve the thread later. However, when
called from compiled code, this method does not give any name to the
thread. So give a name to the thread in compiled use:

root

[] TThread *th = new TThread("MyThread", UserFun, UserArgs);

You can pass arguments to the thread function using the UserArgs-pointer.
When you want to start a method of a class as a thread, you have to give the
pointer to the class instance as UserArgs.

Running:

root
root

[] th->Run() ;
[] TThread::Ps(); // like UNIX ps c.ommand;

With the mhs3 example, you should be able to see a canvas with two pads

on it. Both pads keep histograms updated and filled by three different
threads.

With the CalcPi example, you should be able to see two threads calculating
Pi with the given number of intervals as precision.

348

December 2001 - version 3.1d Threads

TThread in More Detail

CINT is not thread safe yet, and it will block the execution of the threads until
it has finished executing.

Asynchronous Actions

Different threads can work simultaneously with the same object. Some
actions can be dangerous. For example, when two threads create a
histogram object, ROOT allocates memory and puts them to the same
collection. If it happens at the same time, the results are undetermined. To
avoid this problem, the user has to synchronize these actions with:

TThread: :Lock () // Locking the following part of code
e // Create an object, etc...
TThread: :UnLock () // Unlocking

The code between Lock () and UnLock () will be performed uninterrupted.
No other threads can perform actions or access objects/collections while it is
being executed. The TThread: :Lock () and TThread: :UnLock ()
methods internally use a global TMutex instance for locking. The user may
also define his own TMutex MyMutex instance and may locally protect his
asynchronous actions by calling MyMutex.Lock () and
MyMutex.UnLock () .

Synchronous Actions: TCondition

To synchronize the actions of different threads you can use the TCondition
class, which provides a signaling mechanism.

The TCondition instance must be accessible by all threads that need to
use it, i.e. it should be a global object (or a member of the class which owns
the threaded methods, see below). To create a TCondition object, a
TMutex instance is required for the Wait and TimedWait locking methods.
One can pass the address of an external mutex to the TCondition
constructor:

TMutex MyMutex;
TCondition MyCondition (&MyMutex) ;

If zero is passed, TCondition creates and uses its own internal mutex:

TCondition MyCondition (0) ;

Threads December 2001 - version 3.1d 349

You can now use the following methods of synchronization:

e TCondition::Wait () waits until any thread sends a signal of the
same condition instance: MyCondition.Wait () reacts on
MyCondition.Signal () or MyCondition.Broadcast () .
MyOtherCondition.Signal () has no effect.

o If several threads wait for the signal from the same TCondition
MyCondition, at MyCondition.Signal () only one thread will react;
to activate a further thread another MyCondition.Signal () is
required, etc.

o |f several threads wait for the signal from the same TCondition
MyCondition, atMyCondition.Broadcast () all threads waiting for
MyCondition are activated at once.

In some tests of MyCondition using an internal mutex, Broadcast ()
activated only one thread (probably depending whether MyCondition had
been signaled before).

e MyCondition.TimedWait (secs,nanosecs) waits for
MyCondition until the absolute time in seconds and nanoseconds
since beginning of the epoch (January, 1st, 1970) is reached; to use
relative timeouts “"delta", it is required to calculate the absolute time at
the beginning of waiting “"now"; for example:

Ulong t now,then,delta; // seconds

TDatime myTime; // root daytime class
myTime.Set () ; // myTime set to "now"
now=myTime.Convert () ; // to seconds since 1970
then=now+delta; // absolute timeout
wait=MyCondition.TimedWait (then,0); // waiting

e Return value wait of MyCondition.TimedWait should be 0, if
MyCondition.Signal () was received, and should be nonzero, if
timeout was reached.

The conditions example shows how three threaded functions are
synchronized using TCondition: a ROOT script condstart.C starts the
threads, which are defined in a shared library (conditions.cxx,
conditions.h).

Xlib connections

Usually X11ib is not thread safe. This means that calls to the X could fail,
when it receives X-messages from different threads. The actual result
depends strongly on which version of x1ib has been installed on your
system. The only thing we can do here within ROOT is calling a special
function XInitThreads () (which is part of the x11ib), which should (!)
prepare the x11ib for the usage with threads.

To avoid further problems within ROOT some redefinition of the gpad pointer
was done (that's the main reason for the recompilation). When a thread
creates a TCanvas, this object is actually created in the main thread; this

350 December 2001 - version 3.1d Threads

should be transparent to the user. Actions on the canvas are controlled via a
function, which returns a pointer to either thread specific data (TSD) or the
main thread pointer. This mechanism works currently only for gPad and will
soon be implemented for other global Objects as e.g. gVirtualX,
gDirectory, gFile

Canceling a TThread

Canceling of a thread is a rather dangerous action. In TThread canceling is
forbidden by default. The user can change this default by calling
TThread: :SetCancelOn () . There are two cancellation modes:

Deferred

Setby TThread: : SetCancelDeferred () (default): When the user knows
safe places in his code where a thread can be canceled without risk for the
rest of the system, he can define these points by invoking

TThread: :CancelPoint () . Then, if a thread is canceled, the cancellation
is deferred up to the call of TThread: :CancelPoint () and then the thread
is canceled safely. There are some default cancel points for pthreads
implementation, e.g. any call of TCondition: :Wait (),

TCondition: :TimedWait (), TThread::Join() .

Asynchronous

Set by TThread: : SetCancelAsynchronous () : If the user is sure that his
application is cancel safe, he could call:

TThread: :SetCancelAsynchronous () ;
TThread: :SetCancelOn () ;
// Now cancelation in any point is allowed.

// Return to default
TThread: :SetCancelOff () ;
TThread: :SetCancelDeferred () ;

To cancel a thread TThread* th call:

Th—>Kill () ;

To cancel by thread name:

TThread: :Kill (name) ;

To cancel a thread by ID:

TThread: :Kill (tid) ;

To cancel a thread and delete th when cancel finished:

Th—>Delete () ;

Deleting of the thread instance by the operator delete is dangerous. Use
th->Delete () instead. C++ delete is safe only if thread is not running.

Threads

December 2001 - version 3.1d 351

Often during the canceling, some clean up actions must be taken. To define
clean up functions use:

}

void UserCleanUp (void *arg) {

TThread: :CleanUpPush (&UserCleanUp, arg) ;

TThread: :CleanUpPop (1) ;

TThread: :CleanUpPop (0) ;

// here the user cleanup is done

// push user function into cleanup stack
// “last in, first out”

// pop user function out of stack
// and execute it,
// thread resumes after this call

// pop user function out of stack
// _without executing it

Note: CleanUpPush and CleanUpPop should be used as corresponding
pairs like brackets; unlike pthreads cleanup stack (which is not
implemented here), TThread does not force this usage.

Finishing thread

When a thread returns from a user function the thread is finished. It also can
be finished by TThread: :Exit () . Then, in case of pthread-detached
mode, the thread vanishes completely.

By default, on finishing TThread executes the most recent cleanup function
(CleanUpPop (1) is called automatically once).

Advanced TThread: Launching a Method in a

Thread

Consider a class Myclass with a member function void*
Myclass: :ThreadO ((void* arg) that shall be launched as a thread. To
start Thread0 as a TThread, class Myclass may provide a method:

}

Int_t Myclass::Threadstart() {
1f (!mTh) {

return 1;

mTh= new TThread ("memberfunction",
(void(*) (void *)) &ThreadoO,
(void*) this);

mTh->Run () ;

return 0;

}

Here mTh is a TThread* pointer which is member of Myclass and should
be initialized to 0 in the constructor. The TThread constructor is called as
when we used a plain C function above, except for the following two
differences.

First, the member function Thread0 requires an explicit cast to (void (*)
(void *)). This may cause an annoying but harmless compiler warning:

352

December 2001 - version 3.1d Threads

Myclass.cxx:98: warning: converting from "void
(Myclass::*) (void *)" to "void *")

Strictly speaking, Thread0 must be a static member function to be called
from a thread. Some compilers, for example gcc version 2.95.2, may not
allow the (void(*) (void*))s castand juststop if Thread0 is not static.
On the other hand, if Thread0 is static, no compiler warnings are generated
at all.

Because the 'this"' pointer is passedin 'arg"' in the call to

ThreadO (void *arg), you have access to the instance of the class even
if Threado is static. Using the 'this' pointer, non static members can still
be read and written from Thread0, as long as you have provided Getter and
Setter methods for these members.

For example:

Bool t state = arg->GetRunStatus();
arg->SetRunStatus (state) ;

Second, the pointer to the current instance of Myclass, i.e. (void*) this,
has to be passed as first argument of the threaded function Thread0 (C++
member functions internally expect the this pointer as first argument to have
access to class members of the same instance). pthreads are made for
simple C functions and do not know about Thread0 being a member function
of a class. Thus, you have to pass this information by hand, if you want to
access all members of the Myclass instance from the Thread0 function.

Note: Method Thread0 cannot be a virtual member function, since the cast
of ThreadO to void (*) in the TThread constructor may raise problems
with C++ virtual function table. However, Thread0 may call another virtual
member function virtual void Myclass::FuncO () which then can be
overridden in a derived class of Myclass. (See example TMhs3).

Class Myclass may also provide a method to stop the running thread:

Int_t Myclass::Threadstop () {
if (mTh) {

}

return 1;

}

TThread: :Delete (mTh) ;
delete mTh;

mTh=0;

return 0;

Example TMhs3: Class TThreadframe (ITThreadframe.h,
TThreadframe.cxx) is a simple example of a framework class managing
up to four threaded methods. Class TMhs3 (TMhs3.h, TMhs3.cxx)
inherits from this base class, showing the mhs3 example 8.1 (mhs3.h,
mhs3.cxx) within a class.

The Makefile of this example builds the shared libraries
libTThreadframe.so and 1ibTMhs3.so. These are either loaded or
executed by the ROOT script TMhs3demo . C, or are linked against an
executable: TMhs3run.cxx.

Threads

December 2001 - version 3.1d 353

Known Problems

Parts of the ROOT framework, like the interpreter, are not yet thread-safe.
Therefore, you should use this package with caution. If you restrict your
threads to distinct and “simple' duties, you will able to benefit from their use.

The TThread class is available on all platforms, which provide a POSIX
compliant thread implementation. On Linux, Xavier Leroy's Linux Threads
implementation is widely used, but the TThread implementation should be
usable on all platforms that provide pthread.

Linux Xlib on SMP machines is not yet thread-safe. This may cause
crashes during threaded graphics operations; this problem is independent of
ROOT.

Object instantiation: there is no implicit locking mechanism for memory
allocation and global ROOQOT lists. The user has to explicitly protect his code
when using them.

Glossary

The following glossary is adapted from the description of the Rogue Wave
Threads.h++ package.

Process

A process is a program that is loaded into memory and prepared for
execution. Each process has a private address space. Processes begin with
a single thread.

Thread

A thread of control, or more simply, a thread, is a sequence of instructions
being executed in a program. A thread has a program counter and a private
stack to keep track of local variables and return addresses. A multithreaded
process is associated with one or more threads. Threads execute
independently. All threads in a given process share the private address
space of that process.

Concurrency

Concurrency exists when at least two threads are in progress at the same
time. A system with only a single processor can support concurrency by
switching execution contexts among multiple threads.

Parallelism

Parallelism arises when at least two threads are executing simultaneously.
This requires a system with multiple processors. Parallelism implies
concurrency, but not vice-versa.

Reentrant

A function is reentrant if it will behave correctly even if a thread of execution
enters the function while one or more threads are already executing within
the function. These could be the same thread, in the case of recursion, or
different threads, in the case of concurrency.

354

December 2001 - version 3.1d Threads

Thread-specific data

Thread-specific data (TSD) is also known as thread-local storage (TLS).
Normally, any data that has lifetime beyond the local variables on the thread's
private stack are shared among all threads within the process. Thread-
specific data is a form of static or global data that is maintained on a per-
thread basis. That is, each thread gets its own private copy of the data.

Synchronization

Left to their own devices, threads execute independently. Synchronization is
the work that must be done when there are, in fact, interdependencies that
require some form of communication among threads. Synchronization tools
include mutexes, semaphores, condition variables, and other variations on
locking.

Critical Section

A critical section is a section of code that accesses a non-sharable resource.
To ensure correct code, only one thread at a time may execute in a critical
section. In other words, the section is not reentrant.

Mutex

A mutex, or mutual exclusion lock, is a synchronization object with two states
locked and unlocked. A mutex is usually used to ensure that only one thread
at a time executes some critical section of code. Before entering a critical
section, a thread will attempt to lock the mutex, which guards that section. If
the mutex is already locked, the thread will block until the mutex is unlocked,
at which time it will lock the mutex, execute the critical section, and unlock
the mutex upon leaving the critical section.

Semaphore

A semaphore is a synchronization mechanism that starts out initialized to
some positive value. A thread may ask to wait on a semaphore in which case
the thread blocks until the value of the semaphore is positive. At that time the
semaphore count is decremented and the thread continues. When a thread
releases semaphore, the semaphore count is incremented. Counting
semaphores are useful for coordinating access to a limited pool of some
resource.

Readers/Writer Lock

A multiple-readers, single-writer lock is one that allows simultaneous read
access by many threads while restricting write access to only one thread at a
time. When any thread holds the lock for reading, other threads can also
acquire the lock reading. If one thread holds the lock for writing, or is waiting
to acquire the lock for writing, other threads must wait to acquire the lock for
either reading or writing.

Condition Variable

Use a condition variable in conjunction with a mutex lock to automatically
block threads until a particular condition is true.

Threads

December 2001 - version 3.1d 355

Multithread safe levels

A possible classification scheme to describe thread-safety of libraries:

e All public and protected functions are reentrant. The library provides
protection against multiple threads trying to modify static and global data
used within a library. The developer must explicitly lock access to
objects shared between threads. No other thread can write to a locked
object unless it is unlocked. The developer needs to lock local objects.
The spirit, if not the letter of this definition requires the user of the library
only to be familiar with the semantic content of the objects in use.
Locking access to objects that are being shared due to extra-semantic
details of implementation (for example, copy-on-write) should remain the
responsibility of the library.

e All public and protected functions are reentrant. The library provides
protection against multiple threads trying to modify static and global data
used within the library. The preferred way of providing this protection is
to use mutex locks. The library also locks an object before writing to it.
The developer is not required to explicitly lock or unlock a class object
(static, global or local) to perform a single operation on the object. Note
that even multithread safe level Il hardly relieves the user of the library
from the burden of locking.

Deadlock

A thread suffers from deadlock if it is blocked waiting for a condition that will
never occur. Typically, this occurs when one thread needs to access a
resource that is already locked by another thread, and that other thread is
trying to access a resource that has already been locked by the first thread.
In this situation, neither thread is able to progress; they are deadlocked.

Multiprocessor

A multiprocessor is a hardware system with multiple processors or multiple,
simultaneous execution units.

356

December 2001 - version 3.1d Threads

List of Example files

Here is a list of the examples that you can find on the thread authors' web

site (Jorn Adamczewski, Marc Hemberger) at:

www-linux.gsi.de/~go4/HOW TOthreads/howtothreadsbody.html#tth sEc8

Example mhs3

Makefile.mhs3
mhs3.h
mhs3LinkDef.h
mhs3.cxx

rootlogon.C
RunMhs3.C

Example conditions

Makefile.conditions
conditions.h
conditionsLinkDef.h
conditions.cxx
condstart.C

Example TMhs3

Makefile.TMhs3
TThreadframe.h
TThreadframelLinkDef.h
TThreadframe.cxx
TMhs3.h
TMhs3LinkDef.h
TMhs3.cxx
TMhs3run.cxx
TMhs3demo.C

Example CalcPiThread

Makefile.CalcPiThread
CalcPiThread.h
CalcPiThreadLinkDef.h
CalcPiThread.cxx

rootlogon.C
RunPi.C

December 2001 - version 3.1d

357

23 Appendix A: Install and
Build ROOT

ROOT Copyright and Licensing Agreement:

This is a reprint of the copyright and licensing agreement of ROOT:

Copyright (C) 1995-2000, René Brun and Fons Rademakers.
All rights reserved.

ROOT Software Terms and Conditions

The authors hereby grant permission to use, copy, and distribute this
software and its documentation for any purpose, provided that existing
copyright notices are retained in all copies and that this notice is

included verbatim in any distributions. Additionally, the authors grant
permission to modify this software and its documentation for any purpose,
provided that such modifications are not distributed without the explicit
consent of the authors and that existing copyright notices are retained in
all copies. Users of the software are asked to feed back problems, benefits,
and/or suggestions about the software to the ROOT Development Team
(rootdev@root.cern.ch). Support for this software - fixing of bugs,
incorporation of new features - is done on a best effort basis. All bug

fixes and enhancements will be made available under the same terms and
conditions as the original software,

IN NO EVENT SHALL THE AUTHORS OR DISTRIBUTORS BE LIABLE TO
ANY PARTY FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OF THIS
SOFTWARE, ITS DOCUMENTATION, OR ANY DERIVATIVES THEREOF,
EVEN IF THE AUTHORS HAVE BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

THE AUTHORS AND DISTRIBUTORS SPECIFICALLY DISCLAIM ANY
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, AND NON-INFRINGEMENT. THIS SOFTWARE IS PROVIDED
ON AN "AS I1S" BASIS, AND THE AUTHORS AND DISTRIBUTORS HAVE
NO OBLIGATION TO PROVIDE MAINTENANCE, SUPPORT, UPDATES,
ENHANCEMENTS, OR MODIFICATIONS.

Appendix A: Install and Build ROOT December 2001 - version 3.1d 359

Installing ROOT

To install ROOT you will need to go to the ROOT website at:
http://root.cern.ch/root/Availability.html

You have a choice to download the binaries or the source. The source is
quicker to transfer since it is only 3.4 MB, but you will need to compile and
link it. The binaries range from 7.4 MB to 11 MB depending on the target
platform.

Choosing a Version

The ROOT developers follow the principle of "release early and release
often", however a very large portion of a user base requires a stable product
therefore generally three versions of the system is available for download —
new, old and pro:

e The new version evolves quickly, with weekly or bi-weekly releases. Use
this to get access to the latest and greatest, but it may not be stable. By
trying out the new version you can help us converge quickly to a stable
version that can then become the new pro version. If you are a new user
we would advice you to try the new version.

e The pro (production) version is a version we feel comfortable with to
exposing to a large audience for serious work. The change rate of this
version is much lower than for the new version, it is about 3 to 6 months.

e The old version is the previous pro version that people might need for
some time before switching the new pro version. The old change rate is
the same as for pro.

Supported Platforms

For each of the three versions the full source is available for these platforms.
Precompiled binaries are also provided for most of them:

e Intel x86 Linux (g++, egcs and KAI/KCC)

e TIntel Itanium Linux (g++)

e HP HP-UX 10.x (HP CC and aCC, egcsl.l C++ compilers)
e IBM AIX 4.1 (xlc compiler and egcsl.2)

e Sun Solaris for SPARC (SUN C++ compiler and egcs)
e Sun Solaris for x86 (SUN C++ compiler)

e Sun Solaris for x86 KAI/KCC

e Compaqg Alpha OSF1l (egcsl.2 and DEC/CXX)

e Compag Alpha Linux (egcsl.2)

e SGI Irix (g++, KAI/KCC and SGI C++ compiler)

e Windows NT and Windows95 (Visual C++ compiler)

e Mac MkLinux and Linux PPC (g++)

e Hitachi HI-UX (egcs)

e TLynxOS

e MacOS (CodeWarrior, no graphics)

360 December 2001 - version 3.1d Appendix A: Install and Build ROOT

Installing Precompiled Binaries

The binaries are available for downloading from

root.cern.ch/root/Availability.html.

Once downloaded you need to unzip and de-tar the file. For example, if you
have downloaded ROOT v2.25 for HPUX:

% gunzip root_v2.25.00.HP-UX.B.10.20.tar.gz
% tar xvf root v2.25.00.HP-UX.B.10.20.tar

This will create the directory root. Before getting started read the file
README/README. Also, read the Introduction chapter for an explanation of
the directory structure.

Installing the Source

You have a choice to download a compressed (tar ball) file containing the
source, or you can login to the source code change control (CVS) system

and check out the most recent source. The compressed file is a one time only
choice; every time you would like to upgrade you will need to download the
entire new version. Choosing the CVS option will allow you to get changes as
they are submitted by the developers and you can stay up to date.

Installing and Building the source from a compressed file

To install the ROOT source you can download the tar file containing all the
source files from the ROOT website. The first thing you should do is to get
the latest version as a tar file. Unpack the source tar file, this creates
directory ‘root”:

o\°

tar zxvf root_v2.25.xx.source.tar.gz

Set ROOTSYS to the directory where you want root to be installed:

oo

export ROOTSYS=<path>/root

Now type the build commands:

cd root

./configure --help
./configure <target>
gmake

gmake install

d° d° o0 o° de°

Add SROOTSYS/bin to PATH and $ROOTSYS/1ib to LD LIBRARY PATH:

% export PATH=$ROOTSYS/bin:$PATH
% export LD_LIBRARY PATH=$ROOTSYS/lib:$LD_LIBRARY PATH

Try running root:

% root

It is also possible to setup and build ROOT in a fixed location. Please check
README/INSTALL for more a detailed description of this procedure.

Appendix A: Install and Build ROOT December 2001 - version 3.1d 361

Target directory

By default, ROOT will be built in the $ROOTSYS directory. In that case the
whole system (binaries, sources, tutorials, etc.) will be located under the
$ROOTSYS directory.

Makefile targets

The Makefile is documented in details in the README/BUILDSYSTEM file.
It explains the build options and targets.

More Build Options

To build the library providing thread support you need to define either the
environment variable ‘ THREAD=-1pthread ’ orthe configure flag *--
with-thread=-1lpthread’ (it is the default for the 1inuxegcs
architecture). [Note: this is only tested on Linux for the time being.]

To build the library providing CERN RFIO (remote 1/O) support you need to
define either the environment variable * RFIO=<path>/libshift.a’ or
the configure flag ‘--with-rfio=<path>/libshift.a’. For pre-built
version of 1ibshift.a see ftp://root.cern.ch/root/shift/)

To build the PAW and Geant3 conversion programs h2root and g2root
you need to define either the environment variable
‘CERNLIB=<cernlibpath> orthe configure flag ‘--with-cern-
libdir=<cernlibpath>’.

To build the MySQL interface library you need to install MySQL first. Visit
http://www.mysql.com/ for the latest versions.

To build the strong authentication module used by rootd, you first have to
install the SRP (Secure Remote Password) system. Visit
http://jafar.stanford.edu/srp/index.html.

To use the library you have to define either the environment variable
SRP=<srpdir> ’orthe configure flag ‘--with-srp=<srpdir>’.

To build the event generator interfaces for Pythia and Pythia6, you first have
to get the pythia libraries available from ftp: ftp://root.cern.ch/root/pythia/.

To use the libraries you have to define either ‘ PYTHIA=<pythiadir> ’orthe configure
flag ‘“--with-pythia=<pythiadir>’. The same applies for Pythia6.

Installing the Source from CVS

This paragraph describes how to checkout and build ROOT from CVS for
Unix systems. For description of a checkout for other platforms, please see
ROOQOT installation web page (http://root.cern.ch/root/CVS.html).

(Note: The syntax is for ba (sh), if you use a t (csh) then you have to
substitute export with setenv.)

362 December 2001 - version 3.1d Appendix A: Install and Build ROOT

% export CVSROOT=:pserver:cvs@root.cern.ch:/user/cvs
% cvs login

% (Logging in to cvs@root.cern.ch)
% CVS password: cvs

% cvs -z3 checkout root

U root/..

U ..

% cd root

% ./configure —-help

% ./configure <platform>

% gmake

If you are a part of a collaboration, you may need to use setup procedures
specific to the particular development environment prior to running gmake.

You only need to run cvs login once. It will remember anonymous password
in your SHOME/ . cvspass file. For more install instructions and options, see
the file README/INSTALL.

CVS for Windows

Although there exists a native version of CVS for Windows, we only support
the build process under the Cygwin environment. You must have CVS
version 1.10 or newer.

The checkout and build procedure is similar to that for Unix. For detailed
install instructions, see the file REAMDE/INSTALL.

Converting a tar ball to a working CVS sandbox

You may want to consider downloading the source as a tar ball and converting it to CVS
because it is faster to download the tar ball than checking out the entire source with CVS. Our
source tar ball contains CVS information. If your tar ball is dated June 1, 2000 or later, it is
already set up to talk to our public server (root.cern.ch). You just need to download and
unpack the tar ball and then run following commands:

% cd root
% cvs -z3 update -d -P
% ./configure <platform>

Staying up-to-date

To keep your local ROOT source up-to-date with the CVS repository you
should regularly run the command:

% cvs -z3 update -d -P

Setting the Environment Variables

Before you can run ROOT you need to set the environment variable
ROOTSYS and change your path to include root/bin and library path
variables to include root/11ib. Please note: The syntax is for ba (sh), if you
are running t (csh) you will have to use setenv and set instead of
export.

1. Define the variable $ROOTSYS to the directory where you unpacked the ROOT:

Appendix A: Install and Build ROOT December 2001 - version 3.1d 363

export ROOTSYS=/root

2. Add ROOTSYS/bin to your PATH:

export PATH=$PATH:$ROOTSYS/bin

3. Set the Library Path

On HP-UX, before executing the interactive module, you must set the library
path:

export SHLIB PATH=$SHLIB PATH:S$ROOTSYS/lib

On AlX, before executing the interactive module, you must set the library
path:

[-z "SLIBPATH"] && export LIBPATH=/1lib:/usr/lib
export LIBPATH=$LIBPATH:$ROOTSYS/1lib

On Linux, Solaris, Alpha OSF and SGl, before executing the interactive
module, you must set the library path:

export LD _LIBRARY PATH=$LD LIBRARY PATH:$ROOTSYS/lib

On Solaris, in case your LD_LIBRARY_PATH is empty, you should set it like
this:

% export
LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$ROOTSYS/lib:/usr/dt/lib

ROOTSYS is an environment variable pointing to the ROOT directory. For
example, if you use the HPUX-10 AFS version you should set:

% export
ROOTSYS=/afs/cern.ch/na49/library.4/R0O0T/v2.23/hp700 ux102/
root

To run the program just type: root

Documentation to Download

PostScript Documentation

The following PostScript files have been generated by automatically scanning
the ROOT HMTL files. This documentation includes page numbers, table of
contents and an index.

e The latest revision of the Users Guide (5MB, 350 pages):
http://root.cern.ch/root/RootDoc.html

e ROOT Overview: Overview of the ROOT system (365 KB, 81 pages)
ftp://root.cern.ch/root/ROOTMain.ps.gz

e ROOT Tutorials: The ROOT tutorials with graphics examples (320 KB,
81 pages) ftp://root.cern.ch/root/ROOTTutorials.ps.gz

e ROOT Classes: Description of all the ROOT classes (1.47 MB, 661
pages) ftp://root.cern.ch/root/ROOTClasses.ps.gz

December 2001 - version 3.1d Appendix A: Install and Build ROOT

HTML Documentation

In case you only have access to a low-speed connection to CERN, you can
get a copy of the complete ROOT html tree (24 MB):

ftp://root.cern.ch/root/ROOTHtmIDoc.ps.gz.

Appendix A: Install and Build ROOT December 2001 - version 3.1d 365

24 Index

COPY/PASEE c.envveeireereeeiieeeree e e ereeevee e 155
A dividing.......coovevvevveeiiieeeeeeee 19,118
list of cavases.......cocueevvreeevieciieereeereeene 184
accent SYymMbOIS........c.covevvevvieiirieieicieeienea 128 modifiedcccooveeiieieieiee e, 120
ACLIC......cccovennn. 96, 97, 98, 265, 283, 323 PIANE ettt 19
active padl19, 24, 107, 112, 115, 117, 118, 121, trANSPATCNL ..o 120
155,156 UPAALE oot 120
adding a class UPAAtING ...vvieierieiiereeeeeeeee e 34
ACLIC....iiiiiiiieceeeeeeeeeee e 283 chain.. 263,265,268, 318, 319, 321, 322, 323,
shared libraryccceceeveevienenencncnennee 280 343
arc 153 NAINE ..evveeeeeieeeeiieeeeeieeeeeeeeeeeeaeeeeeeareeeens 268
ATTAYS +eveeveeneeneeneenteseeeteeseeneeeeseseeseessesaeeneens 222 change directorycoceeeveeeienenennnne 101, 187
AITOW ..eveeeevieeeeeeeeeeeeeeeeereeeeee e e eeaee e 122, 153 check buttons..........coceeevieeieeiiicceceee 333
ANELE ... 123 CINT oottt 83
OPLIONS ...veeevieereeereeere ettt 123 COMMANAS.....ovieeieiieiieieeie e 20
asymmetric errors in graphs...........c.ccccceeeeee. 61 debugger......c.ccoceverineneniiicin 7,84,93
automatic class descriptions............cceeeuveenne 341 dictionary........ccoccvevveecueenennne. 96, 97, 98, 276
automatic schema evolution...........c..cccce... 202 dIiCtONATY ..cveeniiiiienccece e 278
AULOSAVE ... 220 EXTENSIONS ..oeeeeveeeeeeeeee e eeeee e 20, 95
axis 136 IIDIary .oooeevieieee 8
DINNING .o 139 CITCIES oot 123
Jabel. e 137, 138 class 75
OPLIONS ...vieevieerieereeere ettt ete e eeneas 137 Class INAEX ...cveevvieieirieiieeie e 11
tick Marks........coveeveeveennane. 36, 38, 138, 139 ClassDef..... 111, 193, 202, 274, 275, 277, 280
time format..........cocoeveveeeeeeieieeeee e 139 ClassVersionIDccoceeevvveecieeireeeneenee. 274
L8 (RSO 38,110, 137 CLENE ..ot 329
coding CONVENtiONS......c.eeververererererirerireneenns 21
B COIIECHIONS ..o 285
ordered........coceevveeiiiieiiieeiieeeee e 287
bar graph ... 57 SOTEEA ..ot 287
batch mode.......ccovvvvieiiiiiiiiiieeeeeee e 14 UNOTAETEA. ... 287
get histogram........cocoeeveveeienicncncnencnn 249 color 150
benchmark..........ccocooeeviiiiiiiiicieeceee, 318 color palettesccoeveveeveveeerieiceeeeeiee 150
branchcoooveviiiiiiieeee e 220 column-wise ntuples........ccoeevvevereeneenreenens 26
browser 84,174, 189, 216, 226, 317 COMbBO DOXES.....oovveeiieieeieeeeeeeeeeeeeeeee, 334
byte count.........cceevvevieiiecieeieee e 222,281 command 1iN€ccoeeveeeeeeeeeeeeeeeeeeee, 20, 85
VIS0 USSR 24
c multi-line command...............ccc.o......... 21,87
QUIE. ettt 15
(62211 16,107, 114 SROTE CULS ..o 20
automatically created ... 184 command OPHiONSccceeeeirrirrrierererenennns 14
Index December 2001 - version 3.1d 367

COMPIESSION ..veenevieeeriererieeieeeireerereenireensaeens 208
Io1) 41513 1 Lo 10) QUSRI 16, 78
contact
COMIMENLSvvveeeiiieeeeiieeeeeereeeeerreeeeereeeeennas 2
Mailing liStcoovveriieiieieeieceeeeee e 1

context menu 16, 110, 111, 115, 133, 143, 148,

AddING.....ooiieiieiee e 111
tOZEIE oo 111
CONLOULneeeieeeeeeeeeeciiieeeeeeeeeenns 36,37,42, 44
COPY/PASEE eeeveeereeereeerreeieeeireesereesereeneneens 155
[o10) (o 110 1 RS 8
CUIlY arcoovveveeiieeieecieeee e, 126, 153
curly lines......cceeveeeieeniieeiieciieeieee 125, 153
current directory.....23, 89, 101, 102, 181, 186,
187, 190, 215, 257
CUITENt SEYIE .oovveeneieiieiieieeeee e 161
CUTSOT 1eveenirieiieesiteeeieeeteeeieeebeeesaeeenbeeenaeeens 108
cut 247
CVS 362
cycle NUMDET.........ccoveiieieieieeeee e 182
D
data encapsulation...........cccceeveveeecieencriencieennns 77
debuggingcccoecveeienieniiieeeeen 93
default constructor 274,275, 280
deStIUCTOT ..o 80
diamondcooceeviiiiiiiie 153
documentation..........ccceeveerieenienrenienieneene 364
draw options for graphsccccecveeeennnnen. 55
draw options for histograms...........cc.ccceeenee. 36
draw panel
SHACT ..ot 18
DrawClonePad...........cccoevvvvienieiiiiiiies 155
drawing ObDJECtS.....ccveevvieerieeeiieeie e 107
E
ClLIPSE .o 153
ClLIPSES oo 123
environment Settingsccoceeveereenueennene 24,25
eITors in Eraphsccoveeviinienieieceieeeee, 60
EVENE LISt .eeeiiiiiieiieiiececeeceeee 257
(9. €: 11110 (TSRS 9,313,314
ANALYSIS...eevieiieieeie e 321
AXIS oo 141, 142
bar graphcccoecveeieiiee e 57
basic graphics.......eccveevveeververierieneeeenn, 314
collection classes..........cceveverveneenerenerennnns 314
COPY/PASEE evveerieereeeireeieeeieeeireeireenaneens 155
creating a file.......cccoevveevieeiieciie e 173
CIeating @ tre€....ccvuveervreerereeiieerieeerireeneneens 314
creating histogram...........ccccceeevveerveennnnn. 314
TN e e 71,314
fitting SUDIanges........ccceevveerveervveenveeniveennns 70
fitting with user defined function............... 68
raph ..o 55
graph with contineour linecccc.c...... 56
GUI aCtionSeecvveeeeeeeieeiesieseeeee e 338

GUI applicationccceeeveerveenveenreennnn. 320

GUI Classes...c..eevueeuieienieniienieeeeeeee e 336
GUI frame layout........cccceevevvreerreenneennne. 337
GUI Widgets .o.vveeveieeeieeiieeiieeeeee e 338
JAtEX e 130, 131
lazy application..........ccccevvereenieereennnne 315
lazy GUI classesccevvervenieenieniennne 314
lazy MatriX.....ccoevveeeveieeieeieeee e 314
MakeProject.......ccvevveveeeeierierienieiieienns 203
mathematical eXperssioncceeeuvennne 129
NATTIX ¢ttt 314
PhYSICS VECTOT ..vvvieiiieeiie e e 312
POStSCIIPt .vveeeiieeieeieeeeecee e 160, 161
remote access to a file.......coccoocevenieicns 210
STIING ClaSSES..ecvveeereeiieeireerieenreeevee e 314
11513 USSR 314
threadsccoooeveveveeieeeeeeeee 353, 357
tree read/Write.......veeveeeeeieeie e 227
tree With a Structocveeveeeeieeieeieeieiees 231
tree with an event list..........ccooceevvenrenens 257
tree with Event........ccoccevevveieiienieiee 241
tree with friends........coocevverinenininnens 237
VECEOTS ..envieniieniienieeiieniteniee st seeenieeeeeneeens 314
exit 15
eXponentialcccveevveeriiieeiieeiiieeee e 66
F
fBits 273
Feynman.......ccccccovevveiiiienieeieee e 125
file 173
ClOSE. ..ot 188
COMPIESSION ...uveeeieerieereiieiieieerneeeeeneeens 208
current direCtoryceevervvereeereereeenennn 182
cycle NUMDErS........ccccvevieriieiieieee e 182
free blocK.....oovuieiiiiiiii 178
headercoceevieiiiiiiiic 175
list of ObJeCtS .oovvveeveeciieeiieeeeee, 101, 187
1ogical ...ccveeeieeciieeiieceee e 178
logical VIEWccvveeveeriieeiiecieeeeeeeeee 180
NAVIZALING .veevvieeiieeiie e eee e 190
Objects I MEMOTY ...ocvvevvveerereeieeneeeeeeenes 183
objects on disK.......coeeverienienieieee 183
OUL OF SCOPEL .nvveieeeieiieieeieeeee e 188
physical [ayout...........cccveevievieeienieneen. 173
read MOdeoovvevieiieieiie e 182
(16701 1 OSSR 176
TECOVETY vvveeeirieeeeeereeesueeereeenseeessreensneenns 178
retrieving obJectsvvvereeeeieeerieeiieeeieens 189
saving collectionscccceeveveerveeeneenne 188
saving histograms..........cccceeveveerveeeveennne. 185
SAVING ODJECLES ..vvveeerreiieeieerveeeiee e 188
SEICAMET ...ttt 192
SUDAITECtOrICS. ..o 189
subdirectory
TEMOVING ..vveeveenieenieeeeereereeeeeeneseeeneeas 191
A0 11 SRR 185, 188
File
free blocks ..ooveeeiiiiiiie 180
file header.........ccoooueviinieniiie 175

368 December 2001 - version 3.1d Index

files

ACCESS Via Wb SEIVeTcceevueenieeieeieenene 211
fill attributes......cooveeviiiiiiieeeeeee 149
Fit Panel.......ccocoveiivieiieieee e 65
fIttNgG .oveeeeeieeeeeeeee See histogram fitting

draw Options........cceeveeveeeriieieeieeieeieeene 66

exponential...........cceeeeeiiiieiiienieneee 66

FUNCHON .o 66

GAUSSIAN ...evvieeeeereeiieiieteeie e seee e e e enes 66

hiStOZramccceevvveevieeeiieiiieeee e 65

initial parameters.........cceeveerveerveerveenenenne 67

landau......cocoovieiiiiii 66

0] 0131028 1SSt 66

polynomialcccceeeriieniiiniiieeiee e 66

predefined functioncccceeveveerieennnnns 67

QUICT ettt 66

TATIZEC ...t enveeenireesireesiteesteeeteesbeeeteeebaeenaneens 66

VEIDOSE . eveeieeeee ettt 66
FOLAETS .o 165

hierarchycoocveeeveciieieieeeee e, 166

SCATCH ..o 167
fonts 145
fraCtionsoc.eevueeiiiiiiieee e 127
frAME .o 334
framework........occeveiviinienii 3

AdVANTAZES ...eeeveeeereeiieeie et 4

COMPONECILS ...vveeirieirieeiieeieeeieeeieeenireenaeees 3

OTZANIZAION ..eeevveiieeeieeeiesieeee e eee e 6
function

derivativec.ecveveerieeee e 15

111 e | S 15

number of Pointsccceeeeeceereerierieee, 16
fUNIQUEIDooeviieeieeeeeeee e 274
G
AUSSIAN.....eeeereieeienenn 33,48, 65, 66,67, 173

gDirectory..2, 23, 89, 101, 181, 182, 183, 187,
190, 191, 258, 325, 351

gEnv2l, 24, 25, 147

gFile23, 190, 351

EHtML ..o 341

global variables.........cccceevveveveeiierieeee, 23

gPad 24, 38,47, 113,115, 116, 117, 118, 121,
154, 156, 346, 347, 350

gRandom.......ccccoevveiieiiiieee 24, 47
rAPN .o 55
ASYMMELTIC ETTOTS...cevveerereerereerreenveenaeenens 61
AXIS -eeereeieeetee st et ettt 56
AXIS t1ES .eoveeiiiiieiee 63
bar graphcceeeveeecieeeiieeie e 57
COlleCtion.....cc.eevuieiiiiiiieeceeee e 62
dAraw OPtioNS......cccveercveeeriieeiieerieeeireeire e 55
CITOTS ..cneenrienrienreeereeirenirenieenieenaeenaeenaeenneenne 60
FIHNG et 57
FIENZ e 62
MATKETS....eevvieeieeieeeieeiieieee e 58
SUPCTIMPOSING ..vvevveenvrenreenreeereeeieneeeeeeneeenees 59
ZOOML .ottt ettt et stee bt ebeebeetesaeesaee e 63
graphical CUt........cceeevieriieniieieeee e See

graphical editor..........cceeevveviiiieniecieeiene 153
graphical objects
adding events.........ccevvveeeiierciieniieeieeee 112
coordinate system
COMVETSION. ...eeuveviiinieeiieieneenienieeereeennes 118
global Settingcccceeeevevereenienieennen. 116
pixel coordinates...........ccoeeveeveevenenennen. 117
MOVING...cevieiieiieieerieneeereeeereeeennens 108, 109
TESIZING .oonvieeieiieieeieeie e eeeeeeseeeeeeeeens 108
SEIECHING....eeeevieeieeeiie et 109
greek fontccooevveveieeiciieeeeeeee 127, 159

gROOT.. 23, 35, 42, 81, 90, 97, 129, 130, 131,
141, 150, 151, 162, 183, 184, 283, 322,
325,337,339

gROOT->ReSCt...cccvvvivieeiieirieeiee e 81,90
GUI aCtionscceveveereeieniecieseeseeeee e 338
GUI Application.........ccceveereereeriesieenenes 320
H
h2100t ... 26, 362
HBOOK ...ttt 26,27
heap 78, 89, 90, 189
hiStogram..........cccevveveierienieeeieee e 29
1-D hiStogramsccccceveeveerveeienieneenen. 29
2-D hiStogramscccceeveereeneeienieneennenn 29
3-D hiStogramscccceceeeveeeienieneeneennen. 29
Addition.....c.ooiiiiiiiien 33
AXIS ttle o 38
batch modeccooevviiiiiiee, 249
change default directory 101, 102, 187
ClONE ..o 48
color palette.......ccoevvevevecereiieieeeen, 45,152
CONEOUL ..c.eeniieniienieeieenee ettt sieeaees 42
coordinate SyStems.........ccoecueeveerervereeennenn 43
AIVISION ..ot 33
Araw OPLiONS ..cccvveeeereerieeeieeiieeeieesiee e 36
ATaWING ..c.evieeerieiieeeie e 34
draw OPtionsccceeevveeeveerieenieesreeeneenn 36
setting default........cccocovveeveiiieennen, 37
refreshing.......cccevevvevcieeniicieceeceee, 34
SUPCTIMPOSE ..vvvenveenveenreeneeeneeeneenseensneneees 34
drawing Sub-rangec.cccceeveevereeneeennen. 46
EITOT DATS ...vevieniiieienieeiteeeeeneeee e 33
FIHNG oo 32
with random numbers..............ccoeevernnnne. 33
FIrSt Bin .oeveeeecieieeeee e 31
Fit Panel......ccoooiiiniiiiieee 65
TN et 65, 66
combining functionsccceeeveerveenenenne 71
(<0 (o) 5 J 73,74
FUNCHION ..o 66
function list.......ccooeveenienienieiceieeee 71
initial parameterscoceeeveeeevieniennenn. 67
OPLIONS ..t 66
parameter bounds..........ccevverieniienirenn. 69
PATAMELETS. c..eeeiieeriiieeiee et 74
TANZE ..eonveenreenreeereeeeeeieeieereeereenesene e naee 70
SALISTICS oo 74
user defined functionccuuee..... 67, 68

Index December 2001 - version 3.1d 369

legend......cccoeoviiiiiiniieee 157
1820 POt i 43
list of funCtionscccevvveveeecierierieeene, 66
10g SCALE ..ovvieieeeeee e 121
MUultiplicationccevvevieeeierieiieeeee e 33
profile histogramsccccceecvevvenienirennen. 29
PIOJECHION .oviiieeieeie e 34
TEAAING .vveeiieit et 48
1E-DINNINGvviiiiieiiieieeie e 32
automatic re-binningceceeevvveeeneennne. 32
remove from directory 102, 187
Saving to file......ccovveeeiveerieeieeee e 185
SCALtET PlOt...eiiiiieeiieeiiecieeeee e 39
second Bincoceeviiriiiriinieieee 31
second to lastf binccoeevevverienieiee, 31
SEYIC e 34
SUPCTIMPOSE ..evvvenveerreenveenreenreeneesseensaenseennes 47
SUrface plot.......cceeeeevierierieieeeeee e 44
variable bin SiZes.......ccccvevvererieeierieeene, 31
WIIEIE oottt 48
history file.....ccvviiieeieceeee e 24
home directorycccvvvevvieniieiiieeieeeieeenee. 183
|
I/O redirection..........ccoeeeveenenciiencencene 86
icons333
IgnoreObjectStreamerccccceveeveeeeennnen. 274
N MEMOTY ODJECES...vvvveiieeiieeiieeiie e 185
include path.........ccoocvevveiiiiieeeee, 99
Inheritancecccccoeeeveeeevceeeeeeneeeeene. 76,271
INPUL/OULPUL ...t 173
INSPECHING ..ottt 94
install ROOTcccooveiiiinininiiiciccce 360
11011514 01 (51 1<) SR 83
INtroSpectionccceeeveerveencieescieeeiie e 271
THerator....coueeeieeeieeeeee e 290
TEETALOTS Lottt 287
K
kBypassStreamerccceeeveeveveeecireenneeennen. 197

key 176,179, 186, 188, 196, 197, 285
KEY 181

KOVEIWIILE ..o 187

L

label 153

1abELS ...eveeieiieeee e 132

landau........oooeeierieie e 66

latex 126, 153

layout Managersccoecveeveerieerreeseeneennenne 334

le@endsooeereeniiieie e 157

1820 POt .t 43

JIDTATICS oottt 8
CINT e 8
COTC.uveeerieereeereeeeeeeteeenereesreessseensseessseenssens 8
dependencies........ccoevvereerienienieeeeeene 8

JICENS e 359
line 122, 153
line attributescccevvevienienieeecece 148
LinkDefcocevieiiininininnne 10, 195, 279, 281
0] 078 (o) 1 - 281
LiSt DOXES...uvieeveeereeeieeeieiieieee e 334
logarithmic scalecccocveriereecienieene 121
Lorenz vector........c.covcveeeviieniiiieiieiiieeeeene 306
M
mMacro Path........ccceeevevienienieeeeeeeeen 25
mMailing list.......cocvveeerieieieeeeecee e 1
MakeProjectcoovevieiinienienienceceee 203
manual schema evolution..........c.cceeeeueeeee. 203
110114 (=) OSSR 125, 154
MATKETS 1. 58
mathematical eXpressions.........cceeevveerveene 126
mathematical symbols............cccoecvervrrnnnnne. 128
MENU DATS ..o 333
method overridingcoccvevvecvecieeienneen. 76
MEthOdS c..oveieiiieiiiceeccceceen 76
mouse
left buttonceecvveeieieeieee e 108
multi-line commandcccceeeieiiinienienen. 21
multi-pad canvasc.ceeeeerriencieencieenveennne 19
multiple SOCKEtS.....c.eevvverrieiiieeieerieeeieene 332
MUEEX ..o 347,349
N
NDC117
NEtWOTKING...c.veeiiiiiiiiiieeeeeeec e 329
normalized coordinate system.................... 117
NEUPIE oottt 213
0]
OBJ 181, 184
object oWNershipoccoevvecvecieecienieeeee, 101
ODbjeCts 1N MEMOTY ..evveevveneieriereereeeeeeeenees 183
objects on disk.......cccvevierienieieie e 183
ordered collectionsccecceevveereervennnnne. 287
P
pad 153. See canvas
coordinate SyStemcceeverveeruervennnennn 116
COPY/PASEE c.envreeereeeireeeieeereeeree e e eree e 155
divIdINg....coeeeiiiieeeee e 118
find an object......cccveviieriiieiiieeie e, 115
hide an object.......ccccvveeveeeciieeieeieeieene 116
modifiedooeeiiiiiiii 120
TLANSPATENL .eevvvveeeeeeieeeieeeireeieeeieeeeee e 120
UPAALE ..ot 120
UPAALING ... 34
PALCHE .ot 150
pave 153
PAW o, 1,26,321, 362
PRYSICS VECTOT ..vieevieiiieeiee e e 299

370 December 2001 - version 3.1d Index

pixel coordinate............cceeeveerveencieesneennnen. 117
pixel coordinate Systemccccveervrennnen. 117
point 125
POLY-liN€ ..o 123,153
poly-marker.........ccovveviieciieiieieeieceee 125
polynomialcccoevveriienieiieieeeee e 66
POPUP MENUS ...t eireeseeenae 333
POSESCIIPL ..o 158
print See canvas
PIIVALE c.eveeiiieeiieecieeeie e sre e e 77
profile hiStogramsccceeeveeveveeeceeiiieeeinenns 49

2D 52

from @ tree...cc.eevveeriieiiieieerecee 52
PROOF ..ottt 343
PUDBLIC it 77
R
radio BUttonsceccveeeereerierieeieeeeenenn 333
ramdom NUMDETSceeevreverrereieneieeeeeenns 24
FECtANGIeS .o 124
reset 81, 90
Rint 182
rootalias.C.........coooveeeveeeeeeeeeeeeee e 25,26
rootcint.....7, 97, 111, 193, 195, 278, 279, 281,

282

REIP i 281
rootd7, 209, 210, 362

command line argumentsc..ccue... 211
100tlOZOTE.C .o 25
ro0tlogon.C.....coevvieiieiieieeie e 25,162
TOOLICorrrrrereeeeeeeeirreeeeeeeeenn, 14, 24, 25, 88, 147
rotation of TVector3cccccvevverieniveieennene 303
FOW-WISE NEUPIES ...oovieniiiiieiecie e 26
RTTI oo 4, 84,271,274, 286, 335
REypes.h.cceieiieiieeee e, 275
S
saving collections to disk........c.cccccevernine 188
SCALtET PlOt..ieceiieiiieeieeciieeieeeee e 39
schema evloution

AUEOMALIC ...t 202
schema evolutioncccceeoeeveenenicnicneene 199

MAaNUal......cocoriiniiiiieee e 203
SCOPC v 87, 89, 90, 187, 188, 189, 196
SCIIPL 1eereeiieeiie ettt nnes 87

COMPILING .vovieieieeieeie e 96

debugger......cooveiiiieciee e 93

named..........oooveeeiiiiieeeeiieeeenn, 88, 89, 90, 97

UN-NAMEdovvvvveeiieiiiiiiieeeeeeeeeeas 87, 88,90
script compilercceeeveeciienneennen.. See ACLIC
SCIIPL PAth..ccciiiciiecieee e 25
SCIOll DArS. .c..eeiieiiiiiiece e 334
SCLECTOTS ..ottt 265
SEMAPNOTEveeiiieeiieeiie e 347
SEIVET ..eveireniienieentienteeeteeteenteeieereennesanesaeene 329
ShowMembers().......cceeeveereereeerrerieneeeneeenns 278
SHACTS ..o 134
SOCKEL ...ttt 329

sorted collectionS..........coevvvvvvieeiiviiiinnnnnnnn. 287

special characters.........occveeevvercieencieenneennen, 159
split-level......ooovevcieeniiieieeieeeeeee, 223,226
square root Symbolcccoecvveeiereieriennenne, 127

stack 78, 89, 90, 134, 188, 189, 352, 354, 355
statistics

FIENG oo 74
STL 296
1 (c0001S) USRI 330
turn off automatic creation 195
StreamerInfo
aITay N ClassS....ccveeeveerieeniieeieeeiee e 200
definitioncccveeeeveeviiieniieceeeee e 200
Mafile..iiiieiieee e, 176
list 176
StreamerInfoElement.......................... 200, 201
STTEAIMETS ...vveeueveeiiieiieeniieeniiee et e 192
N1 170 0014 (o 193
CUSTOMM .. 195
exclude TObjectc.oevveeeeeieiieieeeee 197
POINLETS ..ot 192
prevent Splitting.......ccceevveevveeneeenveeneennns 195
TCIONESAITAYevveeveeeieeeiie e 197
transient data members..........ccceeevveerunene 194
variable length arrayscccccceevveenneens 194
WIItING ODJECES ..uvveeiiieeiieciie e 196
style 161
SUDAITECLOTIES ..vveneveneieniieieeieee e 189
Superimposing graphs.........cceeeveveervererennnns 59
SUPCTSCIIPES ...vveereeieeieiieieereeieeieeee e e 126
supported platforms............ccceeevvrvernnnne. 4,360
SUrfacce plotcccoveeereeieicnicnencnenceeeene 44
T
tab completionc.ccccvveeeeieniiencieenieeeieene, 20
tasks 168
TBrowser.........cccoeevuvvvnen.. 20,21,27,174,317
TChain......cccoeeciieeieeiieeeeeee e, See chain
TCIaSS.ceetieeteeeiie et 271
TCIONESAITAYeeeeveeeeiieeiieeiie e esiveeeivee s 295
kBypassStreamer...........ccceevereervenereinnns 197
TCoNdItiON ..o 347
template containers...........cceevereeereeereeenenne 296
test 318
teXt AttribULES ..oovvveeeeieeeeeeeeee e 143
TFOIdEr ... 165
TGraphoocveeveceeeeeee 55. See graph
TGraphAsymmErrors..........cccoeevvevenieninenen. 61
TGraphEITOrsoooveeeiiieieeee e 60
THILZFit et 66
thread.....coveeeeeiececeee e 345
threads ...vveeeeeeiiecee e 354
asynchronous actioncceeeeveeeveennne. 349
cancelling........cccoveeevievviienciieeieeciee e 351
CONCUITENCY .venvveenereeireenireenreenareesseennnes 354
condition variableccocerierienieennne. 355
deadlockcoovveiieiieiee 356
EXAMPIES ..ot 357
1OCK e 355

Index December 2001 - version 3.1d 371

reentrant Code........ccvvvvvverrieerieeecreeeieeennen. 354
S 01E:1 0] 110 (PR 355
SyNnchronizationcceeevevevenevenireerennnns 355
THEML. oo 341
TIErator ..o.eeeeeeeeeeeeeeee e 288
TLASE ettt 292
TLorentzZVector......cccueevveerieenieeniieeieeenee. 306
TIMESSAZE ...veeuvveeiieeiieeriieeeiee sttt 330
TMultiGraphcccoeeveevieeeieeieeie e 62
TODJAITAY...cccvvieiieeeieecieeeiee e 294
TODJECE ..eeeveecieeeieeeiee ettt 22
CIONC....evieeieeeiie ettt 272
L4 8 LSS 196
WIS vttt 272
TPAVES...ciiiieiiiieieeiteee e 132
transient data membersccccceeriveirenene 194
treads
INItIAliZationccceeveveveeeieeieeee e 347
installation.........ceceveeieeevienieeeeeeee 346
tree
friendS c.oveeeeeeeieee e 237
tTEE VIEWET ..eevvieereeeiiieenieeeieeeveeeveeeeneenenes 216
trees
AULOSAVE ..evvvieiieeiiieciie e esve e sve e 220
Dranchescoocveeeveevieenieeniecie e 220
array of objectS......ccvvvvvrierienieieieeee 225
array of variables...........ccooevervenienirennen. 222
identical names...........ccoeeeveenieenreenennnn. 225
list of variablescccoeevreverienieieenen. 221
o) o] 511 £ 222,226
split-level......ccooeveninininiiinene. 223,226
CIEALINE . eeeveeeeiieeieeeiieerireeeieeenereesereenaneens 219
creating a profile histogram 259
creating histogramsccceeeveereveennnnn. 258
cut 247
ATAW et 246
draw OPtioNS.....ccccveerveerieeriieereeeieeereens 249
Prof , profs......cceecveceeeieeeeeee 52
EVENL LISt .eevieiieiieie e 257

FOldErS. ..o 220
histogram stylec.cccceeriveenennnne. 247,258
INFOrmMationcooeeuvvveeeeeiieiiiiieeeeeeeenne 259
MakeClass................ 260, 261, 264, 265, 321
SELECTION.veeiceeeeeeeeee e 247
SELECTOTS .. 265
SHOW ... 215
static class memebers 223,226
TTEE VIEWET «.vveeeeeeeeeeeeeeeeeeeeeeeeeeeeenneeen 216
USING TCUL ..eeeiiieieeieeee e 248

true type fonts.......ccceecveeveeeiiienieerieeeiees 147

TTASK. ..o 168

(10170} g T2 [T 9

TVECOI3 oo 300

types22

U

unordered collectionsccevuveeveeeeennn. 287

user coordinate SyStemcceeeveerveennnnnn 116

\"

variable length array.........ccocovevveenieennenns 194

W

WED SEIVET ... 211

WED SILE....veiiieiiie e 11

WIAZELS oo 333,338

X

X11 333

XC1aSS'95 e 333

Z

ZOOML....uuurreeeeeeeeeeecinnreeeeeeeeeeanneeeens 16, 18, 63

372 December 2001 - version 3.1d Index

	Preface
	Table of Contents
	I
	Introduction
	The ROOT Mailing List
	Contact Information
	Conventions Used in This Book
	The Framework
	Installing ROOT
	The Organization of the ROOT Framework
	How to Find More Information

	Getting Started
	Start and Quit a ROOT Session
	First Example: Using the GUI
	Second Example: Building a Multi-pad Canvas
	The ROOT Command Line
	Conventions
	Global Variables
	History File
	Environment Setup
	Logon and Logoff Scripts
	Tracking Memory Leaks
	Converting HBOOK/PAW files

	Histograms
	The Histogram Classes
	Creating Histograms
	Fixed or Variable Bin Size
	Filling Histograms
	Random Numbers and Histograms
	Adding, Dividing, and Multiplying
	Projections
	Draw Options
	Statistics Display
	Setting Line, Fill, Marker, and Text Attributes
	Setting Tick Marks on the Axis
	Giving Titles to the X, Y and Z Axis
	The SCATter Plot Option
	The ARRow Option
	The BOX Option
	The ERRor Bars Options
	The COLor Option
	The TEXT Option
	The CONTour Options
	The LEGO Options
	The SURFace Options
	The Z Option: Display the Color Palette on the Pad
	Drawing a Sub-range of a 2-D Histogram (the [cutg] Option)
	Drawing Options for 3-D Histograms
	Superimposing Histograms with Different Scales
	Making a Copy of an Histogram
	Normalizing Histograms
	Saving/Reading Histograms to/from a file
	Miscellaneous Operations
	Profile Histograms

	Graphs
	TGraph
	Superimposing two Graphs
	TGraphErrors
	TGraphAsymmErrors
	TMultiGraph
	Fitting a Graph
	Setting the Graph's Axis Title
	Zooming a Graph

	Fitting Histograms
	The Fit Panel
	The Fit Method
	Fit with a Predefined Function
	Fit with a User- Defined Function
	Fixing and Setting Bounds for Parameters
	Fitting Sub Ranges
	Example: Fitting Multiple Sub Ranges
	Adding Functions to The List
	Combining Functions
	Associated Function
	Access to the Fit Parameters and Results
	Associated Errors
	Fit Statistics

	A Little C++
	Classes, Methods and Constructors
	Inheritance and Data Encapsulation
	Creating Objects on the Stack and Heap

	CINT the C++ Interpreter
	What is CINT?
	The ROOT Command Line Interface
	The ROOT Script Processor
	Resetting the Interpreter Environment
	A Script Containing a Class Definition
	Debugging Scripts
	Inspecting Objects
	ROOT/CINT Extensions to C++
	ACLiC - The Automatic Compiler of Libraries for CINT

	Object Ownership
	Ownership by Current Directory (gDirectory)
	Ownership by the Master TROOT Object (gROOT)
	Ownership by Other Objects
	Ownership by the User

	Graphics and the Graphical User Interface
	Drawing Objects
	Interacting with Graphical Objects
	Graphical Containers: Canvas and Pad
	Graphical Objects
	Axis
	Graphical Objects Attributes
	The Graphical Editor
	Copy/Paste With DrawClone
	Legends
	The PostScript Interface
	Create or Modify a Style

	Folders And Tasks
	Folders
	Why Use Folders?
	How to Use Folders
	Tasks
	Execute and Debug Tasks

	Input/Output
	The Physical Layout of ROOT Files
	The Logical ROOT File: TFile and TKey
	Streamers
	Schema Evolution
	Migrating to ROOT 3
	Compression and Performance
	Accessing ROOT Files Remotely via a rootd
	Reading ROOT Files via Apache Web Server

	Trees
	Why should you Use a Tree?
	A Simple TTree
	Show An Entry with TTree::Show
	Print the tree structure with TTree::Print
	Scan a Variable the tree with TTree::Scan
	The Tree Viewer
	Creating and Saving Trees
	Branches
	Adding a Branch to hold a List of Variables
	Adding a TBranch to hold an Object
	Adding a Branch with a Folder
	Adding a Branch with a TList
	Examples For Writing and Reading Trees
	Example 1: A Tree with Simple Variables
	Example 2: A Tree with a C Structure
	Example 3: Adding Friends to Trees
	Example 4: A Tree with an Event Class
	Trees in Analysis
	Simple Analysis using TTree::Draw
	Using TTree::MakeClass
	Using TTree::MakeSelector
	Performance Benchmarks
	Impact of Compression on I/O
	Chains

	Adding a Class
	The Role of TObject
	Motivation
	The Default Constructor
	rootcint: The CINT Dictionary Generator
	Adding a Class with a Shared Library
	Adding a Class with ACLiC

	Collection Classes
	Understanding Collections
	General Characteristics
	Determining the Class of Contained Objects
	Iterators: Processing a Collection
	Foundation Classes
	A Collectable Class
	The TIter Generic Iterator
	The TList Collection
	Iterating over a TList
	The TObjArray Collection
	TClonesArray – An Array of Identical Objects
	Template Containers and STL

	Physics Vectors
	The Physics Vector Classes
	TVector3
	TRotation
	TLorentzVector
	TLorentzRotation
	Physics Vector Example

	The Tutorials and Tests
	$ROOTSYS/tutorials
	$ROOTSYS/test

	Example Analysis
	Explanation
	Script

	Networking
	Setting up a Connection
	Sending Objects over the Network
	Closing the Connection
	A Server with Multiple Sockets

	Writing a Graphical User Interface
	The New ROOT GUI Classes
	XClass'95
	ROOT Integration
	A Simple Example
	The Widgets in Detail
	Example: Widgets and the Interpreter
	RQuant Example
	References

	Automatic HTML Documentation
	PROOF: Parallel Processing
	Threads
	Threads and Processes
	Implementation of Threads in ROOT
	Classes
	TThread for Pedestrians
	TThread in More Detail
	Advanced TThread: Launching a Method in a Thread
	Known Problems
	Glossary
	List of Example files

	Appendix A: Install and Build ROOT
	ROOT Copyright and Licensing Agreement:
	Installing ROOT
	Choosing a Version
	Installing Precompiled Binaries
	Installing the Source
	Setting the Environment Variables
	Documentation to Download

	Index

